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        This chapter seeks to illuminate the core values driving technical research in 
human–computer interaction (HCI) and use these as a guide to understanding how it 
is typically carried out and why these approaches are appropriate to the work. HCI 
overall seeks to both understand and improve how humans interact with technology. 
Technical HCI focuses on the technology and improvement aspects of this task—it 
seeks to use technology to solve human problems and improve the world. To accom-
plish this, the fundamental activity of technical HCI is one of  invention —we seek to 
use technology to  expand what can be done  or to  fi nd how best to do things  that can 
already be done. Inventing new solutions to human problems, increasing the poten-
tial capabilities of advanced technologies, and (in a spiral fashion) enabling others to 
invent new solutions and/or apply advanced technical capabilities are all central to 
technical HCI. The ability to create new things, to mold technology (and the world), 
and to enhance what people (or technology) can do drives our fascination with tech-
nical work; hence, the core value at the heart of technical HCI is invention. 

 One way of understanding the work of technical HCI research is by contrasting 
it with other types of HCI research. In an interdisciplinary setting such as HCI, we 
often shift between disciplines that have stable and functional but potentially con-
tradictory world views. In doing so, we are confronted with the need to select and 
use (or at least appreciate, understand, and evaluate) a wide range of methods and 
with them a wide range of expectations and values. For example, different disci-
plines, such as social and cognitive psychology, design, and computer science, have 
evolved their own methods, value systems, and expectations about what constitutes 
appropriate and impactful work. Because they work well for individual disciplines, 
these expectations and values are often left somewhat unexamined within the disci-
pline itself. For a researcher to work effectively within a discipline, it is critical to 
know and heed these expectations and values (and hence be able to distinguish and 
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produce good vs. not-so-good work). But in turn it is often less critical to fully 
understand the variety of perspectives held in other disciplines. However, in an 
interdisciplinary setting like HCI, examining  why  particular methods are suited to 
particular kinds of work is important. While invention is not unique to technical 
HCI (this is also a clear component of design-oriented HCI; see Chaps. Science and 
Design and Research Through Design in HCI), this distinction does separate it from 
parts of HCI that aim to describe or understand the world through, for example, new 
discoveries about how the world works, critical theory, or models of human behav-
ior. Thus, as we lay out the expectations, values, and approaches inherent in techni-
cal HCI, we will use as a touchstone the contrast between its main activity of 
 invention  with the focus on  discovery  that typifi es some approaches to HCI research. 

 Another way of understanding technical HCI research is by contrasting it with other 
types of technical work that is not research. For our purposes,  research  can be seen as 
having  the creation of reusable knowledge  at its core. More specifi cally  technical HCI 
research  emphasizes knowledge about how to create something (invention) but also 
knowledge that might be reused to assist in the creation of a whole class of similar 
things or even multiple types of different things. For example, several decades ago 
considerable research effort went into developing ways to allow graphical user interface 
(GUI) layout to be specifi ed graphically, including the fi rst modern “interface builder” 
(Hullot,  1986 ). In contrast,  development  has at its core the creation of a particular 
thing—something we might often consider a  product . Development generally requires 
creation of knowledge, but there is no particular need that this knowledge be reusable. 
So for example, numerous similar “interface builder” tools are now available in various 
development environments. Each of these required substantial effort to create and per-
fect. But only a small part of those efforts have produced reusable concepts. 

 The distinction between research and development leads to differences in 
approach among those who practice purer versions of each. However, there is no 
clear dividing line between them. For example, development of nearly any useful 
artifact can provide knowledge about how to (or perhaps how not to) build another 
similar artifact. Further, as will be considered later in this chapter, good evaluation of 
inventive research almost always mandates some development work—the building 
of some, or all, of the thing invented. In the end, this means that research and devel-
opment activities are often intertwined and can be diffi cult to cleanly separate. Thus, 
in the second half of this chapter we describe the work of invention in HCI, focusing 
on types of impact, the essential role of development in validating any invention 
(through a proof-of-concept implementation), and other forms of validation. 

    Einstein Versus Edison: Invention as the Basis 
of Technical HCI Work 

 Activities of  invention  at their core seek to bring useful new things into the world. This 
nearly always requires knowing facts about the world and may entail pursuit of new 
discoveries if the necessary facts are not known or not known well enough. But the 
heart of invention is  changing how the world works through innovation and creation . 
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This is the core purpose and the typical passion of those who undertake activities of 
invention. In contrast, activities of  discovery  at their core seek to  develop new under-
standings of the world . To the extent that inventions play a role in these activities, they 
are in the service of discovery.   

         Photos are in the public domain   

    Note that we might have used the terms  science  and  engineering  here, rather than 
discovery and invention. In our view, discovery and invention are at once more 
descriptive and more neutral terms. Both activities are critically important to the 
success of HCI, but there is a discernible bias, at least in academic circles, towards 
science and away from engineering. We can see this by noting that we often hear 
phrases such as “Where’s the science in this?” and “That’s just engineering,” but we 
pretty much never hear “Where’s the engineering in this?” or “That’s just science.” 
In fact “science” is often misused as a synonym for “rigorous” or just “good work” 
irrespective of whether the work is actually scientifi c in nature. On the other hand, 
both discovery and invention can confer great benefi ts to society, and as such both 
have been honored. We can see this by noting that exemplars such as Einstein and 
Edison are both held in high regard in many societies. 

 There are many similarities in the work of discovery and invention but also some 
key differences. These have to do with the underlying values and goals of each type 
of work, specifi cally what constitutes how work in the fi eld moves forward and what 
constitutes a trustworthy and valuable result. 

    Differences in How Fields Move Forward 

 Activities of discovery can have a variety of aims, including generating rich, 
 empirically based descriptions, and creating new theoretical understandings 
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(see Chaps. Reading and Interpreting Ethnography and Grounded Theory Method, 
this volume). Once articulated, theories typically form  framing truths  that establish 
a context for the work. The work of discovery often proceeds by elaborating and 
refi ning these framing truths to progress towards improved understandings. An ini-
tial theory that explains the most easily observable facts may be refi ned to explain 
more phenomena or to be more predictive. This progression requires developing 
and testing competing ideas (which might both be consistent with a framing theory). 
For example, both Newtonian and Einsteinian notions of gravity explain everyday 
objects falling to earth, and even the motion of planets, quite well. Only when we 
consider fi ner and more diffi cult-to-observe phenomena does one clearly improve 
on the other. As another example, the speed and accuracy of directed reaching 
movements are well described in one dimension by Fitts’ law    (Fitts,  1954 ). However, 
this theory has various limits (for example, when applied to 2D targets of arbitrary 
shape). Newer theories, for example those based on the microstructure of move-
ments (see Meyer,  1990 ), provide a more detailed account of the same phenomena 
and allow us to overcome some of these limitations (see for example, Grossman & 
Balakrishnan,  2005b ; Grossman, Kong, & Balakrishnan,  2007 ). 

 In contrast, activities of invention almost always progress towards the creation of 
new or better things but not necessarily through refi nement. Normally we invent by 
combining a set of things we already understand how to create into larger, more 
complex, or more capable things that did not previously exist. The early phonograph 
for example made use of existing concepts such as a mechanism for rotary motion at 
a carefully controlled rate and the use of a horn shape for directing sound and com-
bined these with a new method for recording and reproducing small vibrations with 
a needle in a trace scored in a tinfoil sheet. Similarly, in an HCI context the fi rst 
graphical interfaces (Sutherland,  1963 ) were created using existing input and display 
devices (a light pen, buttons, rotary input knobs, and a random dot CRT) along with 
new concepts expressed in software to create (among other pioneering advances) the 
ability of users to manipulate objects displayed graphically by pointing at them. In 
both inventions each of the detailed precursors was combined to create a much more 
complex and functional whole based on these smaller and simpler parts. In some 
cases, activities of invention may start with a larger truth (about something that 
 should  be possible), but the detailed process of invention still typically depends on 
the combining of smaller or simpler parts into a larger and more complex whole. 
Hence, in contrast to discovery, as we progress in invention we are not necessarily 
refi ning a framing truth. In fact, our understanding can sometimes actually decrease 
because we are creating more complex things that are less well understood than the 
simpler things they are made of. However, the things created are more  capable —they 
do more or better things in the world—and this is the core of inventive progress.  

    Differences in What Makes a Result Valuable and Trustworthy 

 In discovery work, the properties of valuable and trustworthy results are intertwined. Core 
values in discovery work include increasing understanding (e.g., of new phenomena) or 

S.E. Hudson and J. Mankoff



73

understanding in more powerful ways (e.g., more profoundly or in some cases 
 predictively). But the desire to  know  and have confi dence in results makes the details 
and reliability of the methods used to reach a result of central importance (what 
Gaver calls “epistemological accountability” in Chap. Science and Design). In 
some sense, the methods used to obtain a result are part of the result. The assertion 
of an understanding about the world cannot stand on its own; it is necessary to know 
about the method (or in some perspectives, the person; see Chap. Reading and 
Interpreting Ethnography). 

 The need for high confi dence in results drives the familiar tactic of isolating and 
testing a small number of variables—often just one or two—in an attempt to sepa-
rate their effects from other confounds. This tactic achieves increased trustworthi-
ness at the cost of focusing on less complex circumstances. As a result, a study that 
tests a theory in a specifi c context may only be able to make claims about a narrow 
slice of reality. This can make it hard to generalize to more complex, real-world set-
tings without replicating the study in many different but similar settings to be sure 
that the underlying theory is robust across changing circumstances. To be sure, 
some forms of discovery grapple more directly with complexities of the real world 
(see many chapters herein), but confi dence in the results, building consensus, and 
causal attribution can be more diffi cult. 

 Invention, in contrast, privileges the value of creating something that has the 
potential for practical impact. To improve practicality, inventions are most valued if 
they work within the full complexity of the world around us. In fact, in many cases, 
if we limit the scope of work to very controlled situations (e.g., with only one or two 
degrees of freedom), it can easily  destroy  the value of the work. Often we start with 
specifi cs and use them to create something that has multiple uses. Indeed to the 
extent it is possible to apply the result (the invention) in multiple domains it may be 
considered more valuable. 

 For invention, the goodness of a result is a property of the concept invented. The 
properties of the thing invented generally stand alone and can be understood and 
evaluated independently of the particular methods used in the inventive process. It 
might be that the inventors came up with their result by means of an arduous pro-
cess of testing many alternatives, or it might be that the concept came to them in a 
dream the night before. However, if both paths lead to the same invention, it is 
equally good. The trustworthiness of an inventive result depends on an examination 
of the thing that was invented (almost always through consideration of an imple-
mentation of it).   

    The Work of Invention in Technical HCI 

 We have shown that invention can be seen as an activity that creates artifacts that 
can solve problems in the world and that the things that make a result trustworthy 
and valuable differ between activities of invention and discovery. In this section we 
explore the process of invention, focusing on key aspects of technical HCI research. 
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Our focus in this section is not on the creative process per say, but rather on the 
directions from which one might approach invention. 

 We begin by reviewing the types of contributions typically found in technical 
HCI research (direct creation and enabling research). Next we review approaches to 
concept creation, followed by proof-of-concept implementations, the core form of 
validation for invention. This form of validation is a crucial and inseparable part of 
the process of concept creation. However, while building takes on a central role, 
additional validations may help to show the specifi c impacts of different types of 
technical contributions. We then present a review of these types of secondary vali-
dations. Thus we might well break up the work of inventive research into three parts 
rather than two: concept creation, proof-of-concept implementation, and (addi-
tional) validation.  

    Types of Contributions 

 The contributions that can be made by inventive HCI research can come in a number 
of forms. Many of them might be summed up at the highest level as supporting the 
invention of things that meet human needs. This can in turn be separated into at least 
two overall categories:  direct creation  of things meeting human needs and develop-
ment of things that  enable  further invention. 

  Direct creation  is most straightforward. This might involve creation of some-
thing that improves some aspect of a long-standing goal such as supporting collab-
orative work at a distance (Engelbart & English,  1968 ; Ishii, Kobayashi, & Arita, 
 1994 ) or selecting items on a screen more quickly (Sutherland,  1963 ;    Grossman & 
Balakrishnan,  2005a ); that introduces a new capability such as interacting with wall 
displays that are larger than the reach of a person’s arms (Khan et al.,  2004 ; 
Shoemaker, Tang, & Booth,  2007 ); or that brings a capability to a new user popula-
tion such as photography by the blind (Jayant, Ji, White, & Bigham,  2011 ). 

  Enabling research  on the other hand is more indirect. It has as a goal not directly 
addressing an end-user need, but rather to enable others to address a need by making 
it possible, easier, or less expensive for future inventive work to do so. Enabling 
research can also come in a number of forms. These include development of tools, 
systems, and basic capabilities. 

  Tools  generally seek to make it much easier to create a certain class of things. 
Tools normally do not directly meet end-user needs. Instead, they act indirectly by 
enabling developers to quickly and easily meet end-user needs or to construct com-
plex and functional artifacts. For example, through extensive UI tools research in 
the 1980s (such as Buxton, Lamb, Sherman, & Smith,  1983 , Cardelli,  1988 ), speci-
fying the appearance and basic functioning of a GUI is now a simple enough matter 
that it can often be done by those with only minimal programming ability. Tools 
also often bring a benefi t of making it practical to create a broader set of things. For 
example, subArctic (Hudson, Mankoff, & Smith,  2005 ) and Amulet (Myers et al., 
 1997 ) are GUI toolkits that provide high-level abstractions that make it much easier 
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to build interactive systems. Tools may not provide any new capabilities at all, but 
instead make existing capabilities much more accessible or useful for developers 
(see threshold and ceiling effects, below). 

  Systems  bring together a set of capabilities into a single working whole—often 
providing abstractions that make these capabilities more useful, more manageable, 
and/or easier to deploy or reuse. For example, the input handling abstractions in the 
Garnet toolkit (Myer,  1990 ) made use of fi nite state machines for controlling inter-
action as many systems do—something already widely used. However, it provided 
a new highly parameterized abstraction of that concept which made it much easier 
for developers to use. Systems also sometimes bring together a disparate set of 
capabilities that has not been combined before or combine capabilities in new ways 
that make them more useful. As an example, every major operating system today 
includes a subsystem specifi cally for handling overlapping windows, which pro-
vides basic input and output capability on a single set of devices that can be shared 
by many programs. 

  Basic capabilities : Another enabling contribution is an advance on a specifi c and 
diffi cult problem that is holding up progress in a problem domain. The advance 
made may be very narrow but have value in the breadth of the things it enables. By 
creating new or improved algorithms, new circuits, or new sensors, we can enable a 
range of new inventions. Examples of HCI-relevant basic capacities that have been 
introduced, e.g., to modern operating systems include input device drivers, event 
modeling (providing an abstraction that describes user input in a device- independent 
fashion), and graphics systems (which provide an abstraction for displaying images 
on a screen; typically one that can be transparently translated into a range of fast 
graphics hardware). In another example, algorithms for face recognition and track-
ing that were able to operate at frame rate (Viola & Jones,  2001 ) enabled a range of 
new capabilities such as digital cameras that automatically focus on faces, thus 
producing better photography by average consumers with no additional effort on 
their part. 

 Finally, it is important to note that enabling research also often takes the form of 
 importing  and  adapting  advances made in other technical areas and putting them to 
use for new purposes. In some respects this might not be considered invention per se. 
However, it surely must be considered a research advance, as in the modern world 
substantial progress is made in exactly this fashion—an idea or a concept originally 
created in one research domain is fi rst imported, and then typically adapted, for use 
in others. For example, fi nite-state automata are now heavily used in implementing 
interaction techniques. This concept was fi rst introduced for HCI use by Newman 
( 1968 ). However, Newman clearly did not invent fi nite-state automata (they were 
originally devised to model neuronal activity (McCulloch & Pitts,  1943 )    and subse-
quently used in many other ways). Nonetheless, the idea has been of great benefi t in 
user interface implementation and has since been built on and improved upon 
numerous times (Wasserman,  1985 ; Jacob,  1986 ; Appert & Beaudouin-Lafon, 
 2008 ; Schwarz, Mankoff, & Hudson,  2011 ). As such this importing and adaptation 
of a powerful technique can have great value and so must be considered a contribu-
tion in its own right. 
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    Approaches to Concept Creation 

 It is extremely diffi cult to put one’s fi nger on the best approach to inventing a new 
concept. However, there are some strategies that have been shown to be productive 
in our experience. One of the most frequent outcomes of inventive work in HCI is 
to devise a new way to bridge between technical capabilities and human needs. This 
simple framing points the way to some of the most common strategies for develop-
ing technical contributions. A researcher can start from an observed human need 
and seek to fi nd a technical approach that can make a positive impact on the need. 
This approach often leads one to specialize in one or more application areas, learn-
ing more and more about the details of human needs in that area. For example, 
systems supporting special-needs populations such as elder care (see for example 
Mynatt, Essa, & Rogers,  2000 ; Mynatt, Rowan, Craighill, & Jacobs,  2001 ) have 
often taken this approach. A researcher may do discovery-based work to better 
understand these needs (and human properties that impact them) and then seek 
(mostly existing) technological capabilities that might be used to meet these needs. 

 Within this general framework, one can also work from the technology side: a 
researcher may specialize in one or more areas of useful or promising technology—
learning a substantial amount about how they work (and/or where their weaknesses 
lie), and extending and improving them, and then seeking to fi nd existing human 
needs that the technology might have a positive impact on. For example Shwetak 
Patel and his colleagues have produced several related types of sensors that work by 
observing changes in the noise found on household power lines (see Patel, 
Robertson, Kientz, Reynolds, & Abowd,  2007 ; Cohn, Morris, Patel, & Tan,  2011 ; 
Gupta, Chen, Reynolds, & Patel,  2011 ). This work was undertaken not because of 
a human need but because of a new technological opportunity that the researchers 
have considerable expertise with (the ability to rapidly analyze and classify minute 
variations in “noise” as an intentional signal). Initially, the research was used to 
sense the location of people within the home, but the researchers also developed the 
capability to sense appliance use and then simple gestures. These potentially very 
useful sensing capabilities could be installed simply by plugging a device in (as 
opposed to hiring an electrician). Thus, as it happened, the resulting product was 
able to meet several human needs, once it was packaged in an easily deployable box 
and tied to applications of interest. 

 This type of technology-fi rst approach has developed a bad reputation within the 
HCI research community. Historically, researchers coming from technological dis-
ciplines have not always matched their emphasis on progress in the technology with 
careful attention to true human needs. However, if inventions are in the end really 
valued in proportion to their positive effect on human needs, then it does not funda-
mentally matter whether a technology-driven or a needs-driven approach was driv-
ing the effort to meet those needs. Not only that, technology is currently changing 
very quickly, while human needs are changing relatively slowly. Indeed, technology 
is becoming pervasive so rapidly that it is beginning to drive change in human 
needs. Also, invention that focuses ahead of the technology curve is more likely to 
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be relevant in the 5–10-year horizon that matters in research. These factors combine 
to make technology-fi rst invention an effective way to build bridges between tech-
nology and human needs. 

 Of course, in practice good researchers often do not limit themselves to either 
pure needs-fi rst or technology-fi rst approaches. Instead a common approach is to 
study (or simply stay informed about) the properties of people and the progress in 
meeting needs within a few application areas and at the same time carefully track 
progress in a range of potentially useful technologies, searching for new things that 
might meet outstanding needs. This points to another important property of inven-
tive work—that progress is very often made not by conceiving of entirely new 
things but instead by  recognizing  that innovations might be used in additional ways 
and adapting or combining them to meet existing needs. While we often think of 
invention at its heart as the conception of new things, in fact it much more often 
involves recognition of new possibilities within already invented things or enabled 
by new combinations of things (followed in many cases by some adaptation). For 
example, low-cost MEMS-based accelerometers were originally marketed in large 
part to support the deployment of airbags in automobiles. But once these devices 
became available, they were adapted for HCI use. First they were used for exploring 
the use of tilt as a general form of input (Harrison, Fishkin, Gujar, Mochon, & Want, 
 1998 ). This in turn was adapted in additional research on the use of sensors in 
mobile devices to support landscape/portrait display orientation switching (Hinckley, 
Pierce, Sinclair, & Horvitz,  2000 ), which was in turn adopted with small modifi ca-
tions in most current smartphone and tablet interfaces. 

 In addition to bridging between technology and needs, another typical strategy 
for making progress is to seek out particular roadblocks to advancement and focus 
specifi cally on those. This strategy typically involves carefully tracking progress in 
some application or technological area, analyzing what the roadblocks to progress 
or limitations of current solutions are, and then producing concepts targeted specifi -
cally at these roadblocks. This approach can often be more indirect—it does not 
seek to directly impact a human need but instead enables something else that 
 (eventually) will. For example, the authors’ joint work on tools and techniques for 
dealing with uncertainty (   Mankoff, Hudson, & Abowd,  2000a ,  2000b ; Schwarz, 
Hudson, & Mankoff,  2010b ) arose in part from the diffi culty of building a specifi c 
recognition- based interface to address the need of people with certain disabilities to 
use something other than the keyboard and mouse for computer input. Tools are a 
common outcome of this paradigm.  

    Validation Through Building of Proof-of-Concept 
Implementations 

 When we consider validation of an invented concept there are many criteria with 
which we might judge it. However, most fundamental is the question of “does it 
work?”. A concept can have many good properties, but unless and until it can be 
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realized in a form that actually functions, none of those properties matter very 
much. Further, experience with invented concepts shows that many ideas that seem 
excellent at the early point we might call  on paper  fail in the details that they must 
confront during implementation. That is, there are one or more seemingly small or 
hidden details that end up becoming a major obstacle to practical implementation of 
the concept. Most small details are relatively unimportant. However, some details 
can end up critically important, and experience has clearly shown that it is very dif-
fi cult to segregate the critical from the trivial details in advance. This diffi culty leads 
to the most fundamental of validation approaches for inventive work:  proof-of- 
concept implementation . Because of the diffi culty of uncovering critical details, 
experienced inventors do not put much credence in an idea until it has been at least 
partly implemented; in short:  you do not believe it until it has been built . 

 The centrality of proof-of-concept implementations as a validation mechanism is 
so strong that the evolved value system gives  building  a central role. Even a really 
strong user study or other empirical evaluation cannot improve a mediocre concept 
(or tell us how good an invention it is). In contrast, a proof-of-concept implementa-
tion is a critical form of validation because an invented concept is not normally 
trusted to be more than mediocre without an implementation. 

 While the creation of concepts is arguably the most important aspect of inven-
tion, proof-of-concept implementations typically consume the most time and effort 
in inventive work. Building things is typically hard, so hard that it is often impracti-
cal to build a complete implementation of a candidate concept. This should not be 
surprising since it is not uncommon to spend millions of dollars and years of time 
on the development of a signifi cant real-world product. However, it makes little 
sense to expend the resources necessary to create a complete implementation of a 
concept before much is known about how well, or even whether, it might work. 
Hence, in research most proof-of-concept implementations are compromises that 
implement some of the critical aspects of an idea but do not necessarily consider all 
the different factors that must be addressed for a full complete product. Such a com-
promise seeks to maximize the knowledge gained while working within appropriate 
constraints on the resources required for building. 

    Questions Proof-of-Concept Implementations Answer 

 Proof-of-concept implementations normally seek to elicit particular types of knowl-
edge. This knowledge most often starts with some variation on the basic question of 
“does it work?”. However, we often end up asking “does it work well enough?”. 
How we choose to defi ne “well enough” in turn has a strong impact on the type and 
extent of implementation we undertake. Sometimes we are looking for evidence 
indicating that the concept offers some advantage over existing solutions to the 
same problem. For example there were a number of promising input devices for 
pointing at displays devised before the mouse (English, Engelbart, & Berman, 
 1967 ), but the mouse was found to be a particularly good pointing device compared 
to its competitors (Card, English, & Burr,  1978 ). Sometimes, particularly when 
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creating a completely new capability or overcoming a critical stumbling block, we 
are only looking for evidence that the concept works at a minimal level (but perhaps 
shows promise to be improved). An example is our exploration of the value of cords 
as an input device (Schwarz, Harrison, Hudson, & Mankoff,  2010a ). Sometimes we 
require information about accuracy, accessibility, or effectiveness of the technical 
concepts with respect to end users of some type, in which case a certain level of 
robustness may be required. 

 The question of “does it work (well enough)?” is also complicated by the fact 
that the inventions most valued are often those that are most robust to the widely 
varying conditions of the real world. Similarly, for tools, we ask which ones enable 
the widest range of other things to be created, potentially even unanticipated ones. 
So the question almost always also starts to shift into one of “in what circumstances 
does it work?”. Finally, even when a system does not work well, we may still learn 
something useful if there is enough promise that the concept might be made to work 
and we uncover information about what problems need to be overcome. 

 Overall, the knowledge we seek to elicit through an implementation tends to be 
rich and varied. Correspondingly, as described in the next section, the types of 
implementation approaches seen in typical practice also tend to take on a wide 
variety of forms and approaches (and none really dominates). There are many dif-
ferent implementation platforms that may be used, ranging from scripting or pro-
totyping platforms not normally suitable for production use to “industrial strength” 
platforms of the same type that might be used for a fi nal implementation. Similarly, 
implementations may consider only a very narrow range of function—only that 
which is new or what is strictly necessary to demonstrate the concept alone—or 
may include a richer set of functions necessary to make use of it in more realistic 
settings. In the end, to be suffi cient, a proof-of-concept implementation needs to 
be complete enough to answer both the basic questions of “does it work (well 
enough, etc.)?” and any set of additional questions that we might wish to ask in an 
extended evaluation.  

    Types of Proof-of-Concept Implementations 

 Many proof-of-concept implementations take a form that can best be described as a 
 demonstration . To succeed, that demonstration must illustrate the worth of the 
invention and in many cases motivate why it should be considered a success. 
Demonstrations fall along a rough scale of completeness or robustness. As used in 
the HCI research community, the presentation form of a demonstration is an indirect 
measure of its robustness, ordered below from the least to the most robust:

•    Description in prose  
•   Presentation through photos (or screen dumps) showing the invention working  
•   Video showing the invention in use  
•   Live demonstration by the inventors  
•   Testing of properties with users  
•   Deployment to others to use independently    
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 Presentation type works as a rough surrogate indicator because as we progress 
along this scale, more and more robustness or completeness is required to ade-
quately present it (in part because the circumstances become less and less controlled 
or more open and arbitrary). 

 While higher levels of robustness or completeness clearly provide improved evi-
dence about the quality of the invention, progression along this scale also involves 
dramatically increased levels of effort and resources. For example, deployment for 
widespread use can require a level of completeness nearly identical to a full product. 
(see Chap. Field Deployments: Knowing from Using in Context, this volume.) This 
often brings with it a need for development efforts that touch on many things not 
particularly relevant to evaluating the invention in question. Yet this extremely high 
level of effort may provide only a small increment in additional knowledge. In fact 
in the worst case, a high-end demonstration involving something like a deployment 
can even introduce enough confounds unrelated to the core invention that it actually 
obscures our understanding of it. For example, a deployment may fare very poorly 
with end users, but this might be due to factors completely unrelated to the worth of 
the core invention. 

 For example, suppose we have invented a way to help people who are deaf to fi nd 
out about the content of ambient sounds in their environment (e.g., Matthews, Fong, 
Ho-Ching, & Mankoff,  2006 ). This piece of work, originally completed in 2004, 
depended on a human to transcribe audio that was shipped to them at the request of 
a participant who pressed a “What happened?” button on their mobile phone. At the 
time, technologies that would make this easy to implement today were not avail-
able: smartphones were just beginning to be available (but Android and the iPhone 
were not), Mechanical Turk was less than a year old, speech recognition could only 
function in constrained environments, and non-speech audio was not easily recog-
nized. Our “deployment” lasted only a few weeks and required of users that they 
deal with cellular network wait times of up to 9 h and depend on a single human 
transcriber who was only available for a limited set of hours each day. From a tech-
nical perspective,  all of these barriers were peripheral to the invention itself.  

 Our validation consisted of our proof-of-concept implementation and was (in 
this case) enhanced by some data on places and ways in which the technology was 
used by users who were willing to put up with the other diffi culties. At the time, 
nothing similar existed, so the appropriate goal for the work was to answer the 
question “can we do this at all?”. Our study also answered some questions about 
“what sounds need to be recognized to automate this?” (such as emotion, non-
speech audio) and in the process answered some questions about “where might 
people use this?” though the last contribution was not strictly necessary for the 
work to make a technical contribution. In the six years since the work was pub-
lished all but one (the recognition of non-speech audio) have been “solved.” Thus, 
similar work done more recently has pushed much further on raising the ceiling for 
what can be done. An example is VizWiz (Bigham et al.,  2010 ) that introduced a 
new way to use crowd workers to increase the speed of real-time image interpreta-
tion for the blind, and Legion Scribe (Lasecki, Miller, Kushalnagar, & Bigham, 
 2013 ), which made further advances to enable real-time captioning of videos. 
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However, from a technical HCI perspective, the value of the invention was clear 
(and publishable) irrespective of these diffi culties. 

 As a result, it is critical to fi nd an appropriate trade-off between robustness and 
completeness compared to the cost and effort necessary to create such an implemen-
tation. If we were to insist that each invention has the most robust implementation 
before we could trust its worth enough to build on it, progress in the fi eld would be 
dramatically reduced—we would spend our time creating many fewer things and so 
decrease our ability to learn from, and build on, the previous efforts.  

    Alternatives to Proof-of-Concept Implementations 

 Although proof-of-concept implementations at some level are considered necessary 
as a basic validation, there are times when they are either not appropriate or not pos-
sible. For example, one less common way to make a contribution is to categorize or 
organize prior work in an area in a way that places it in a much more understandable 
light. This includes for example creating a useful taxonomy for a body of work, 
such as the design space of input devices put forth by Card and Mackinlay ( 1990 ). 
While this does not involve the creation of any new invention per se, it requires the 
creation of a conceptual framework of new organizing principles. Such a framework 
may highlight properties that have not been combined or identify areas that have not 
been explored. For example, our review of approaches to handling uncertainty in 
user input (such as touch screen input or gestural input) breaks uncertainty down 
into target uncertainty (where did the user click or what did he or she intend to inter-
act with), recognition uncertainty (what interaction type is indicated) and segmenta-
tion uncertainty (where did an input begin and end) (   Mankoff, Hudson, & Abowd, 
 2000a ,  2000b ). By viewing related work through the lens of different types of 
uncertainty, we can see that very few if any researchers have addressed segmenta-
tion uncertainty in the same depth that other forms of uncertainty have been 
addressed. Observations such as these can point to areas that are “ripe” for new 
work and thus make it easier to invent new things. 

 Another occasion when proof-of-concept implementations are less viable is when 
a concept requires something beyond the current state of the art to realize. While we 
might consider such concepts impractical and discard them, they can be very valu-
able contributions. For example, imagine an application that requires two problems 
to be solved (such as more accurate eye tracking in real-world contexts and more 
robust registration of the user’s head position with the world). It may be possible to 
make progress in one area (more robust registration, say) while waiting for progress 
in the other. Similarly, we may want to demonstrate the high value in terms of unre-
alized applications of a currently unsolved problem as motivation for others to direct 
their attention and resources to solving it. Because of the value of being able to 
consider concepts seemingly beyond the present capability, the community has 
developed several approaches to learning about the properties of these concepts. 
These include  buying a time machine ,  Wizard of Oz  approaches, and  simulation . 
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   Buying a Time Machine 

 One approach to working beyond the state of the art is what is sometimes called 
 buying a time machine . This approach involves spending a comparatively large 
sum of money or other resources—a sum too large to be justifi ed for a real prod-
uct of the same type—to get access now to technology that we can expect to be 
much more affordable and/or practical in the future. For example, we might be 
able to explore the capabilities of a future home vacuum-cleaning robot with very 
sophisticated vision processing by implementing the vision processing on a rented 
high-end supercomputer that communicates with the robot wirelessly. It is not 
currently practical to put a supercomputer in a vacuum cleaner, but the exponen-
tial growth of computing power described by Moore’s law makes it reasonable to 
assume that the equivalent computing power will be available in a single-chip 
computer in the future. 

 Unfortunately, in the area of general-purpose computing, it is harder to  buy a 
time machine  today than it has been in the past. For example, in the middle of 1980s 
technical HCI researchers could employ what were then high-end workstations that 
performed 10 or even 100 times faster than typical consumer products of the era. 
This allowed them to explore the properties of systems that would not be widely 
practical for consumers for another 5–10 years. However, because of changes in the 
market for personal computers, it is not that easy to leap ahead of the “average” 
system today. On the other hand, advanced systems today are incredibly capable 
and diverse in comparison to past systems. Additionally, today’s researchers may 
exploit graphic processing units (GPUs), create custom electronic circuits, or use 
(currently) more expensive fabrication techniques such as 3D printing to explore 
concepts. Each of these technologies allows us to make use of technologies that will 
likely be more practical and ubiquitous in the future but also currently comes at a 
cost in terms of requiring specialized skills or approaches.  

   Wizard of Oz Prototyping 

  Wizard of Oz  prototyping involves simulating advanced capabilities by means of a 
hidden human who performs actions that a future system might be able to provide 
autonomously. This method was originally developed to explore user interface 
aspects of natural language understanding systems that could not yet be built in 
order to inform how such a system should be structured (Kelley,  1983 ,  1984 ). The 
Wizard of Oz approach clearly has some substantial advantages, both for exploring 
currently unattainable capabilities and simply for more rapidly and inexpensively 
simulating attainable ones. However, care must be taken to limit the wizard to an 
appropriate set of actions and to understand the effects that differences such as 
slower response times might have.  
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   Simulation 

 A fi nal way in which we might explore concepts that are impractical or impossible 
to build is to make use of simulation. This can take the form of simulating some or 
all of a system or of providing simulated rather than actual input data. A related set 
of techniques has recently emerged in the form of  crowdsourcing  (see Chap. 
Crowdsourcing in HCI Research, this volume), wherein large numbers of human 
workers recruited by services such as Amazon’s Mechanical Turk can provide 
forms of  human computation  (simulating what otherwise might be computed by a 
machine). Interestingly, recent research shows that it may be possible not only to 
temporarily substitute human computation for future parts of a system but also to 
consider using crowdsourcing techniques as a part of a deployed system (Bernstein 
et al.,  2010 ; Bernstein, Brandt, Miller, & Karger,  2011 ).    

    Secondary Forms of Validation 

 Beyond the central questions surrounding “(In what circumstances) does it work (well 
enough)?” there are a wide range of other criteria by which we can validate invention 
in HCI. These follow a set of properties that the community often sees as valuable. 

    Validations of Inventions Providing Direct Value for Human Needs 

 For inventions that are providing a direct contribution, we value creating an artifact 
that meets a stated human need. These needs are often met by creating a new capa-
bility or by speeding or otherwise improving a current capability. Perhaps the most 
common evaluation methods we see employed to demonstrate this are usability 
tests, human and machine performance tests, and what we will call expert judgment 
and the prima facie case. Although these are not universally appropriate, they are 
the most common in the literature. 

   Usability Tests 

 Because of the current and historical importance of usability and related properties 
as a central factor in the  practice  of HCI, usability tests of various sorts have been 
very widely used in HCI work and are the most recognizable of evaluation methods 
across the fi eld. In fact the authors have frequently heard the assertion among stu-
dents and other beginning HCI researchers that “you can’t get a paper into CHI 1  
without a user test!” 

1   The ACM SIGCHI Conference on Human Factors in Computing Systems , which is the largest HCI 
conference and seen by many as the most prestigious publication venue for HCI work. 
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 This assertion is demonstrably false. An invention must be validated, but valida-
tion can take many forms. Even if a usability test shows that an invention is easy to 
use, it may not be very impactful. Its ability to be modifi ed, extended, or applied to 
a different purpose may be much more important than its usability. Additionally, 
while user-centered methods may help with iterative design of a product, for the 
actual act of inventing—the conception of a new thing—usability tests offer rela-
tively little assistance. However, usability testing (and other user-centered methods) 
does represent a bias of the community at large, particularly when results are going 
to be presented to, or evaluated by, a wide audience within our diverse fi eld. This is 
likely true because they are one of the few evaluation methods with which every 
HCI researcher is sure to be familiar with. 

 On the other hand, usability tests are clearly appropriate when they match the 
properties of a research advance. Any research that puts forward an artifact or a 
system intended to provide improvements in usability, user experience, etc. clearly 
needs to present evidence that this is the case. There are a range of widely employed 
methods for doing this. Not all inventive research seeks to improve on user-centered 
properties. Indeed, it is critically important that we do not push for all or even most 
inventive research to aim mainly at these goals. If we were to do that, the fi eld would 
suffer substantially because in early stages of work on a new type of artifact we 
must often fi rst get past the questions such as “can we do this at all?” and “what 
capabilities are most important?” before considering whether something is useful/
usable/desirable/etc.   

   Photo in the right is copyright  ©  1997  by Steven Feiner (used with permission). Photos in the left 
are ( top ) “New York Times on iPhone 3GS” by Robert Scoble,   http://www.fl ickr.com/photos/sco-
bleizer/4697192856    , and ( bottom ) “Details of Google Glass” by Antonio Zugaldia,   http://www.
fl ickr.com/photos/azugaldia/7457645618/    , both published under a Creative Commons Attribution 
2.0 Generic License       
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   In short, as illustrated in the fi gure above, it is often necessary to pass through 
decidedly non-usable stages to create the technology necessary to make something 
that in the end delivers a great user experience.  

   Human Performance Tests 

 Another very widely used class of evaluation methods involves measuring the per-
formance of typical users on some set of tasks. These tests are most applicable when 
goals for results revolve around a small set of well-defi ned tasks. Work in interac-
tion techniques is one of the few areas where this type of validation is consistently 
appropriate. Because some interactive tasks recur frequently, this is also one of the 
few areas where at least some consistent and reusable measures have emerged. In 
particular, measurement of pointing performance within a Fitts’ law framework 
(e.g., determining Fitts’ law coeffi cients for devices and interaction techniques) is 
common because pointing and selection tasks are fundamental to many interactive 
systems ( MacKenzie,  1992 ; Wobbrock, Cutrell, Harada, & MacKenzie,  2008 ). 
Similarly measures of effi ciency in text entry such as keystrokes per character 
(Mackenzie,  2002 ) have become well developed because text entry is a common 
task that has received considerable inventive attention. 

 One danger in using this kind of evaluation is that human performance tests are 
easiest to apply to narrow and well-defi ned tasks and generally seen as most valid 
when they are carefully controlled. Unfortunately, this leads away from the values 
of wide applicability of results (e.g., an invention useful for a wide range of tasks) 
and so can be in confl ict with other properties of interest for inventive HCI research. 
Instead of looking for statistically signifi cant improvements, it is important to focus 
on practical signifi cance (effect size), and unfortunately there are no simple or 
widely accepted criteria for that. So while human performance tests are widely 
accepted and understood by the community, without care they can be much less 
useful than their popularity might indicate. (See Chapter on Experimental Research 
in HCI, this volume.)  

   Machine Performance Tests 

 Tests can also be done to measure the performance of an artifact or an algorithm 
rather than the person who uses it. These can be very practical in providing informa-
tion about the technical performance of a result such as expected speed, storage 
usage, and power consumption. These measures resemble the validation measures 
commonly used in other domains such as systems research in computer science. It 
is often considered valid to  simulate  use across a range of conditions to generate 
such measures. Although this may be indirect and lack real-world validity, such 
tests of technical performance can in turn point to likely effects on end users such 
as expected response times or battery life of a device. Similarly, tests could indicate 
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properties such as “ runs at frame rate  2 ” that may indicate that the part of the system 
being tested is unlikely to be a bottleneck in overall performance, thus telling the 
researcher that it may be appropriate to turn to improving other parts of the system 
in the future.  

   Expert Judgment and the Prima Facie Case 

 Properties such as innovation and inspiration are of substantial value for many 
research results. Opening new areas others had not considered before and providing 
a motivated basis for others to build within them are central to progress within the 
community. However, these factors are extremely hard if not impossible to measure 
in any standardized way. For these important but more nebulous properties we most 
typically must rely on what amounts to expert opinion—whether the result impresses 
other researchers experienced in the area. This is often done with demonstrations 
and/or scenarios that are intended to present a prima facie case for innovation and/
or inspiration. In essence these are intended to elicit a reaction of “Wow, that’s 
cool!” from experts who know the area well and can informally compare it to the 
state of the art. Such a reaction is a rapid and informal but an experienced-based 
assessment that the work has important properties such as advancing the state of the 
art, opening up new possibilities, or taking a fresh approach to an established prob-
lem. For example, inventions may open a new area that had not been conceived of 
before (such as inspiring large numbers of people to do small bits of useful work by 
playing a game, see von Ahn & Dabbish,  2008 ) or take a substantially different 
approach to a problem that many others have worked on (such as recognizing activi-
ties in a home by listening to water pipes and electrical noise in the basement 
(Fogarty, Au, & Hudson,  2006 ; Patel et al.,  2007 ) or identifying people based on 
recognizing their shoes, see    Augsten et al.,  2010 ). 

 Clearly this type of validation has problems. It is very dependent on the subjec-
tive opinion of experts (most notably reviewers of papers seeking to publish the 
results) and as such is not very reliable or repeatable. Applying validations of this 
form to activities of discovery would normally be unacceptable. But in activities of 
invention where we usually must deal with the uncontrolled complexity of the 
world, and often seek the widest circumstances for applicability, we are almost 
never able to know everything we need to know with certainty. As a result follow-on 
work tends not to make strong assumptions about the applicability of past validation 
to current circumstances. This means that the uncertainty associated with this type 
of validation can be more acceptable and less damaging if it turns out to be wrong. 

 Validation of this form is seen fairly widely in practice—things are valued based 
on informal assessment of their level of innovation and inspiration by experts, in 
colloquial terms things treated as having value in part because “they seem cool” to 

2   This is the rate of display refresh (which is typically 50 or 60 times per second in order to avoid 
perceived fl icker). This rate is of particular interest because even if internal updates to visual mate-
rial occur faster than this, they will still never be presented to the user any faster than this. 
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those with experience in similar work. However, the uncertain properties of this 
approach make reliance on this type of validation alone a rather risky and unpredict-
able approach, both for the inventor seeking acceptance of a single invention and the 
fi eld in making progress overall. To overcome this, most inventions that are vali-
dated in this way often seek to provide additional forms of validation (starting with 
proof-of-concept implementations).   

    Validations of Tools That Have Indirect Impact on Human Needs 

 We now consider validation methods for our second set of contributions: those that 
provide indirect value—that contribute to something that enables or promotes an 
eventual practical impact rather than providing it directly. For these properties, a 
rather different set of approaches to validation are appropriate. 

 One of the most important forms of validation for enabling tools is the use of 
examples of things that can be built with the tool that demonstrate certain desirable 
properties of the tool. These can include demonstrations of lower threshold, higher 
ceiling, breadth of coverage of a desirable design space, increased automation, and 
good abstractions or extensibility, discussed in more detail below. For inventions 
involving base capabilities (which are often aimed at overcoming specifi c road-
blocks or limitations of prior work) machine performance tests and in some cases 
illustration of a prima facie case may be useful. 

   Threshold, Ceiling, and Breadth of Coverage 

 A primary example of how inventions help researchers make useful things is 
 improvements in threshold or ceiling effects  (Myers, Hudson, & Pausch,  2000 ). 
(Threshold effects relate to the ease with which simple things can be accomplished 
and/or novice users can get started, whereas ceiling effects are related to the limita-
tions of a tool or a system for creation of complex or unexpected things.) Validating 
a low threshold for a tool is often done with a demonstration where the inventor 
illustrates that something, which in other tools requires considerable work, can be 
created in their tool easily. For example, the inventor may demonstrate how some-
thing can be built in a small number of steps or using a small amount of specifi ca-
tion code. Validating a high ceiling is most typically done via a demonstration 
wherein the inventor shows that one or more sophisticated or complex things—
often things that are out of the practical reach of other tools—can be created with 
their tool. Unfortunately, low threshold tools often tend to impose a low ceiling, and 
high ceiling tools often come with a high threshold. Consequently, fi nding ways to 
ensure both low threshold and high ceiling in one tool is highly valued. Illustration 
of breadth of coverage is often provided by demonstrating a  spread of examples —
that is, a set of examples that are very different and that span a large(r) space within 
the set of possible results. 
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 These types of validation all involve creating examples with the tool. Note that 
the validation is about creation of the examples, but the full properties of the result-
ing examples are usually not the central issue. So validations that address the prop-
erties of the examples themselves are generally not appropriate. For example, 
performing a usability test on an example built with a tool would likely tell us 
almost nothing about the tool—many different things might be built with any good 
tool, and the usability of those things is at least as much a refl ection of the designer 
using tool as it is a property of the tool. Instead the simplicity of creation (for thresh-
old), the power or complexity (for ceiling), or the variety (for breadth of coverage) 
of the examples is what is critical. 

 As with other sorts of inventions, machine performance tests may be valuable 
for enabling technologies. For example, in the case of increased automation it can 
be appropriate to use performance tests to show that the results are comparable to 
what is created by previous non-automated methods. Similarly, it may be valuable 
to demonstrate that the abstractions employed work as the use of the tool scales up. 
This can be proven in part using simulation, but description and logic may also 
play a role.  

   Presentation of Good Abstractions 

 Like the other validations appropriate for tools and systems, a typical validation for 
good abstractions is through a set of illustrative examples. To illustrate extensibility, 
these examples are often similar to breadth of coverage examples, in that illustrating 
a spread of applicability is useful. For illustrating improved understanding, or ease 
of application, sets of examples are often similar to those used to illustrate improve-
ment in fl oor or ceiling effects. While at times this is validated by having developers 
actually use a toolkit and exploring the details of what they built (see below) this is 
in many cases a prohibitively expensive way to validate, and it is often considered 
suffi cient to describe abstractions and clearly contrast them with prior alternatives.  

   Usability for Developers 

 In some cases, usability tests may be carried out with enabling tools. However these 
tests need to focus on the  developers  who may be using the tool to create applica-
tions, not on the  end users  of the applications created. The number of confounds 
affecting our ability to evaluate whether a tool engenders usable applications from 
an end-user perspective is enormous, and the usability of applications is often not 
the primary value of the tool and should not be the central focus of validation efforts. 

 Some evaluation of developers working with tools has focused on what abstrac-
tions they make use of. When a tool is suffi ciently far along to have a large devel-
oper community, it can also be interesting to look at metrics such as what types of 
applications were built with the tool and how the tool was extended. This begins to 
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resemble studies of programmers, programming, and open-source communities. 
However the cost of bringing a tool this far along may be prohibitive especially 
when compared to the benefi ts for invention. Further, because of the high number of 
confounding factors that may be outside the scope of the tool advance being pre-
sented, this type of validation can actually be quite “noisy.” In particular, it is very 
diffi cult to separate the effects arising from extraneous usability issues in tool inter-
faces being compared from those related to the core concepts of the tools.   

   Summary 

 At this point we must step back and note that the primary form of evaluation for 
enabling technologies is to build key parts of the technology (proof-of-concept cre-
ation). As outlined above, after this primary step it is typical to consider additional 
validation that highlights the specifi c goals of the work, that is, to describe the 
abstractions it employs clearly or to build examples that demonstrate the capabili-
ties of the technology. While there are some secondary evaluations that involve 
(end) user studies, these are rarely employed.    

    Summary and Conclusion 

 In this chapter we have considered the nature of technical work in HCI. To do this 
we have fi rst situated the work in a broad framework that contrasts its inventive 
character with one of the other dominant bodies of activities within HCI: those of 
discovery. This high-level characterization of the work is useful because it allows us 
to see fundamental differences in the nature of the two kinds of work. These in turn 
lead to very different values and methods that have evolved to suit each type of 
work. For example, we conclude that the specifi cs of methods used in activities of 
discovery are extremely important—so much so that results are not really under-
standable in isolation from the methods used to reach them, and so they really 
become part of the results themselves. In contrast, for activities of invention, the use 
of one method versus another is much more fl uid and less fundamental. Instead, the 
application of the invention, as demonstrated through a proof-of-concept implemen-
tation of the thing invented, is a crucial component of the result. 

 Using this overall conceptual framework we then consider inventive HCI work 
itself. We characterize two broad categories of contributions: direct and indirect—
where direct contributions directly contribute to meeting some human need, while 
indirect contributions serve as enablers for later work that meets some human need. 

 We then go on to characterize the tasks of inventive work in HCI. These tasks 
include concept creation and validation of concepts. However, we note that one form 
of validation—the building of proof-of-concept implementations—is more funda-
mental than other forms. Because it addresses the basic issue of “does it work?” 
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a proof-of-concept implementation represents a prerequisite for other validation of 
the work. Because of its special nature it is the normal practice in technical HCI to 
give proof-of-concept implementations separate and stronger consideration than 
other forms of validation. As a result, we conclude that technical HCI work should 
be considered in three parts: concept creation, validation through proof-of- concept 
implementation, and other validation. The creation of a proof-of-concept implemen-
tation (which may need to be quite complex in some cases, as with a toolkit) is a key 
point of difference with other forms of HCI: Technical HCI is about making things 
that work, and the work of technical HCI is not done until the validation inherent in 
an implementation (at a minimum) is complete. 

 We explore each of these three parts separately. There are few specifi c methods 
that one can expect to provide consistently positive outcomes for concept genera-
tion. However, we do consider several general strategies for going about the work. 
These include needs-fi rst and technology-fi rst approaches. We also point to some 
advantages for technology-fi rst approaches, even though they have developed a 
somewhat tarnished reputation within the HCI research community. We then con-
sider validation through proof-of-concept implementations by looking at why 
they are so critical and central. We elucidate the questions that they can address 
and highlight the diminishing returns inherent in making a prototype complete 
and robust. 

 Finally, we consider a range of different forms of secondary validation that can 
be useful. We characterize a range of different measures we might be interested in 
and then consider an equally wide range of techniques that can be applied to provide 
information in those areas. We emphasize again that we must consider a trade-off 
between the level of knowledge to be gained and the costs of these evaluations and 
point to places where our community has not always succeeded in choosing the best 
evaluation methods. 

 It is typical that technical researchers learn these methods and ideas through 
osmosis—few courses teach approaches to validating technical work or concept 
creation in the way that study design and analysis are taught, for example. Instead, 
technical education programs tend to give researchers the necessary knowledge 
base from which to invent (how to program, how to use machine learning, how to 
build circuits, and so on) and hope that with that knowledge, the examples of those 
who came before (and the guidance of mentors), and a good dose of creativity the 
novice research will create good results. This chapter has set out to rectify some of 
those gaps by putting common practice, and the rationale behind it, into words.  

    Exercises 

     1.    Compare and contrasts technical HCI research with research through design.   
   2.    Where do the ideas come from for technical HCI research? What is the problem 

that researchers are solving?         
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