
69J.S. Olson and W.A. Kellogg (eds.), Ways of Knowing in HCI,
DOI 10.1007/978-1-4939-0378-8_4, © Springer Science+Business Media New York 2014

 This chapter seeks to illuminate the core values driving technical research in
human–computer interaction (HCI) and use these as a guide to understanding how it
is typically carried out and why these approaches are appropriate to the work. HCI
overall seeks to both understand and improve how humans interact with technology.
Technical HCI focuses on the technology and improvement aspects of this task—it
seeks to use technology to solve human problems and improve the world. To accom-
plish this, the fundamental activity of technical HCI is one of invention —we seek to
use technology to expand what can be done or to fi nd how best to do things that can
already be done. Inventing new solutions to human problems, increasing the poten-
tial capabilities of advanced technologies, and (in a spiral fashion) enabling others to
invent new solutions and/or apply advanced technical capabilities are all central to
technical HCI. The ability to create new things, to mold technology (and the world),
and to enhance what people (or technology) can do drives our fascination with tech-
nical work; hence, the core value at the heart of technical HCI is invention.

 One way of understanding the work of technical HCI research is by contrasting
it with other types of HCI research. In an interdisciplinary setting such as HCI, we
often shift between disciplines that have stable and functional but potentially con-
tradictory world views. In doing so, we are confronted with the need to select and
use (or at least appreciate, understand, and evaluate) a wide range of methods and
with them a wide range of expectations and values. For example, different disci-
plines, such as social and cognitive psychology, design, and computer science, have
evolved their own methods, value systems, and expectations about what constitutes
appropriate and impactful work. Because they work well for individual disciplines,
these expectations and values are often left somewhat unexamined within the disci-
pline itself. For a researcher to work effectively within a discipline, it is critical to
know and heed these expectations and values (and hence be able to distinguish and

 Concepts, Values, and Methods for Technical
Human–Computer Interaction Research

 Scott E. Hudson and Jennifer Mankoff

 S. E. Hudson (*) • J. Mankoff
 Human–Computer Interaction Institute, School of Computer Science, Carnegie Mellon
University , 5000 Forbes Ave. , Pittsburgh , PA 15213 , USA
 e-mail: scott.hudson@cs.cmu.edu; jmankoff@cs.cmu.edu

mailto:scott.hudson@cs.cmu.edu
mailto:jmankoff@cs.cmu.edu

70

produce good vs. not-so-good work). But in turn it is often less critical to fully
understand the variety of perspectives held in other disciplines. However, in an
interdisciplinary setting like HCI, examining why particular methods are suited to
particular kinds of work is important. While invention is not unique to technical
HCI (this is also a clear component of design-oriented HCI; see Chaps. Science and
Design and Research Through Design in HCI), this distinction does separate it from
parts of HCI that aim to describe or understand the world through, for example, new
discoveries about how the world works, critical theory, or models of human behav-
ior. Thus, as we lay out the expectations, values, and approaches inherent in techni-
cal HCI, we will use as a touchstone the contrast between its main activity of
 invention with the focus on discovery that typifi es some approaches to HCI research.

 Another way of understanding technical HCI research is by contrasting it with other
types of technical work that is not research. For our purposes, research can be seen as
having the creation of reusable knowledge at its core. More specifi cally technical HCI
research emphasizes knowledge about how to create something (invention) but also
knowledge that might be reused to assist in the creation of a whole class of similar
things or even multiple types of different things. For example, several decades ago
considerable research effort went into developing ways to allow graphical user interface
(GUI) layout to be specifi ed graphically, including the fi rst modern “interface builder”
(Hullot, 1986). In contrast, development has at its core the creation of a particular
thing—something we might often consider a product . Development generally requires
creation of knowledge, but there is no particular need that this knowledge be reusable.
So for example, numerous similar “interface builder” tools are now available in various
development environments. Each of these required substantial effort to create and per-
fect. But only a small part of those efforts have produced reusable concepts.

 The distinction between research and development leads to differences in
approach among those who practice purer versions of each. However, there is no
clear dividing line between them. For example, development of nearly any useful
artifact can provide knowledge about how to (or perhaps how not to) build another
similar artifact. Further, as will be considered later in this chapter, good evaluation of
inventive research almost always mandates some development work—the building
of some, or all, of the thing invented. In the end, this means that research and devel-
opment activities are often intertwined and can be diffi cult to cleanly separate. Thus,
in the second half of this chapter we describe the work of invention in HCI, focusing
on types of impact, the essential role of development in validating any invention
(through a proof-of-concept implementation), and other forms of validation.

 Einstein Versus Edison: Invention as the Basis
of Technical HCI Work

 Activities of invention at their core seek to bring useful new things into the world. This
nearly always requires knowing facts about the world and may entail pursuit of new
discoveries if the necessary facts are not known or not known well enough. But the
heart of invention is changing how the world works through innovation and creation .

S.E. Hudson and J. Mankoff

71

This is the core purpose and the typical passion of those who undertake activities of
invention. In contrast, activities of discovery at their core seek to develop new under-
standings of the world . To the extent that inventions play a role in these activities, they
are in the service of discovery.

 Photos are in the public domain

 Note that we might have used the terms science and engineering here, rather than
discovery and invention. In our view, discovery and invention are at once more
descriptive and more neutral terms. Both activities are critically important to the
success of HCI, but there is a discernible bias, at least in academic circles, towards
science and away from engineering. We can see this by noting that we often hear
phrases such as “Where’s the science in this?” and “That’s just engineering,” but we
pretty much never hear “Where’s the engineering in this?” or “That’s just science.”
In fact “science” is often misused as a synonym for “rigorous” or just “good work”
irrespective of whether the work is actually scientifi c in nature. On the other hand,
both discovery and invention can confer great benefi ts to society, and as such both
have been honored. We can see this by noting that exemplars such as Einstein and
Edison are both held in high regard in many societies.

 There are many similarities in the work of discovery and invention but also some
key differences. These have to do with the underlying values and goals of each type
of work, specifi cally what constitutes how work in the fi eld moves forward and what
constitutes a trustworthy and valuable result.

 Differences in How Fields Move Forward

 Activities of discovery can have a variety of aims, including generating rich,
 empirically based descriptions, and creating new theoretical understandings

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

72

(see Chaps. Reading and Interpreting Ethnography and Grounded Theory Method,
this volume). Once articulated, theories typically form framing truths that establish
a context for the work. The work of discovery often proceeds by elaborating and
refi ning these framing truths to progress towards improved understandings. An ini-
tial theory that explains the most easily observable facts may be refi ned to explain
more phenomena or to be more predictive. This progression requires developing
and testing competing ideas (which might both be consistent with a framing theory).
For example, both Newtonian and Einsteinian notions of gravity explain everyday
objects falling to earth, and even the motion of planets, quite well. Only when we
consider fi ner and more diffi cult-to-observe phenomena does one clearly improve
on the other. As another example, the speed and accuracy of directed reaching
movements are well described in one dimension by Fitts’ law (Fitts, 1954). However,
this theory has various limits (for example, when applied to 2D targets of arbitrary
shape). Newer theories, for example those based on the microstructure of move-
ments (see Meyer, 1990), provide a more detailed account of the same phenomena
and allow us to overcome some of these limitations (see for example, Grossman &
Balakrishnan, 2005b ; Grossman, Kong, & Balakrishnan, 2007).

 In contrast, activities of invention almost always progress towards the creation of
new or better things but not necessarily through refi nement. Normally we invent by
combining a set of things we already understand how to create into larger, more
complex, or more capable things that did not previously exist. The early phonograph
for example made use of existing concepts such as a mechanism for rotary motion at
a carefully controlled rate and the use of a horn shape for directing sound and com-
bined these with a new method for recording and reproducing small vibrations with
a needle in a trace scored in a tinfoil sheet. Similarly, in an HCI context the fi rst
graphical interfaces (Sutherland, 1963) were created using existing input and display
devices (a light pen, buttons, rotary input knobs, and a random dot CRT) along with
new concepts expressed in software to create (among other pioneering advances) the
ability of users to manipulate objects displayed graphically by pointing at them. In
both inventions each of the detailed precursors was combined to create a much more
complex and functional whole based on these smaller and simpler parts. In some
cases, activities of invention may start with a larger truth (about something that
 should be possible), but the detailed process of invention still typically depends on
the combining of smaller or simpler parts into a larger and more complex whole.
Hence, in contrast to discovery, as we progress in invention we are not necessarily
refi ning a framing truth. In fact, our understanding can sometimes actually decrease
because we are creating more complex things that are less well understood than the
simpler things they are made of. However, the things created are more capable —they
do more or better things in the world—and this is the core of inventive progress.

 Differences in What Makes a Result Valuable and Trustworthy

 In discovery work, the properties of valuable and trustworthy results are intertwined. Core
values in discovery work include increasing understanding (e.g., of new phenomena) or

S.E. Hudson and J. Mankoff

73

understanding in more powerful ways (e.g., more profoundly or in some cases
 predictively). But the desire to know and have confi dence in results makes the details
and reliability of the methods used to reach a result of central importance (what
Gaver calls “epistemological accountability” in Chap. Science and Design). In
some sense, the methods used to obtain a result are part of the result. The assertion
of an understanding about the world cannot stand on its own; it is necessary to know
about the method (or in some perspectives, the person; see Chap. Reading and
Interpreting Ethnography).

 The need for high confi dence in results drives the familiar tactic of isolating and
testing a small number of variables—often just one or two—in an attempt to sepa-
rate their effects from other confounds. This tactic achieves increased trustworthi-
ness at the cost of focusing on less complex circumstances. As a result, a study that
tests a theory in a specifi c context may only be able to make claims about a narrow
slice of reality. This can make it hard to generalize to more complex, real-world set-
tings without replicating the study in many different but similar settings to be sure
that the underlying theory is robust across changing circumstances. To be sure,
some forms of discovery grapple more directly with complexities of the real world
(see many chapters herein), but confi dence in the results, building consensus, and
causal attribution can be more diffi cult.

 Invention, in contrast, privileges the value of creating something that has the
potential for practical impact. To improve practicality, inventions are most valued if
they work within the full complexity of the world around us. In fact, in many cases,
if we limit the scope of work to very controlled situations (e.g., with only one or two
degrees of freedom), it can easily destroy the value of the work. Often we start with
specifi cs and use them to create something that has multiple uses. Indeed to the
extent it is possible to apply the result (the invention) in multiple domains it may be
considered more valuable.

 For invention, the goodness of a result is a property of the concept invented. The
properties of the thing invented generally stand alone and can be understood and
evaluated independently of the particular methods used in the inventive process. It
might be that the inventors came up with their result by means of an arduous pro-
cess of testing many alternatives, or it might be that the concept came to them in a
dream the night before. However, if both paths lead to the same invention, it is
equally good. The trustworthiness of an inventive result depends on an examination
of the thing that was invented (almost always through consideration of an imple-
mentation of it).

 The Work of Invention in Technical HCI

 We have shown that invention can be seen as an activity that creates artifacts that
can solve problems in the world and that the things that make a result trustworthy
and valuable differ between activities of invention and discovery. In this section we
explore the process of invention, focusing on key aspects of technical HCI research.

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

74

Our focus in this section is not on the creative process per say, but rather on the
directions from which one might approach invention.

 We begin by reviewing the types of contributions typically found in technical
HCI research (direct creation and enabling research). Next we review approaches to
concept creation, followed by proof-of-concept implementations, the core form of
validation for invention. This form of validation is a crucial and inseparable part of
the process of concept creation. However, while building takes on a central role,
additional validations may help to show the specifi c impacts of different types of
technical contributions. We then present a review of these types of secondary vali-
dations. Thus we might well break up the work of inventive research into three parts
rather than two: concept creation, proof-of-concept implementation, and (addi-
tional) validation.

 Types of Contributions

 The contributions that can be made by inventive HCI research can come in a number
of forms. Many of them might be summed up at the highest level as supporting the
invention of things that meet human needs. This can in turn be separated into at least
two overall categories: direct creation of things meeting human needs and develop-
ment of things that enable further invention.

 Direct creation is most straightforward. This might involve creation of some-
thing that improves some aspect of a long-standing goal such as supporting collab-
orative work at a distance (Engelbart & English, 1968 ; Ishii, Kobayashi, & Arita,
 1994) or selecting items on a screen more quickly (Sutherland, 1963 ; Grossman &
Balakrishnan, 2005a); that introduces a new capability such as interacting with wall
displays that are larger than the reach of a person’s arms (Khan et al., 2004 ;
Shoemaker, Tang, & Booth, 2007); or that brings a capability to a new user popula-
tion such as photography by the blind (Jayant, Ji, White, & Bigham, 2011).

 Enabling research on the other hand is more indirect. It has as a goal not directly
addressing an end-user need, but rather to enable others to address a need by making
it possible, easier, or less expensive for future inventive work to do so. Enabling
research can also come in a number of forms. These include development of tools,
systems, and basic capabilities.

 Tools generally seek to make it much easier to create a certain class of things.
Tools normally do not directly meet end-user needs. Instead, they act indirectly by
enabling developers to quickly and easily meet end-user needs or to construct com-
plex and functional artifacts. For example, through extensive UI tools research in
the 1980s (such as Buxton, Lamb, Sherman, & Smith, 1983 , Cardelli, 1988), speci-
fying the appearance and basic functioning of a GUI is now a simple enough matter
that it can often be done by those with only minimal programming ability. Tools
also often bring a benefi t of making it practical to create a broader set of things. For
example, subArctic (Hudson, Mankoff, & Smith, 2005) and Amulet (Myers et al.,
 1997) are GUI toolkits that provide high-level abstractions that make it much easier

S.E. Hudson and J. Mankoff

75

to build interactive systems. Tools may not provide any new capabilities at all, but
instead make existing capabilities much more accessible or useful for developers
(see threshold and ceiling effects, below).

 Systems bring together a set of capabilities into a single working whole—often
providing abstractions that make these capabilities more useful, more manageable,
and/or easier to deploy or reuse. For example, the input handling abstractions in the
Garnet toolkit (Myer, 1990) made use of fi nite state machines for controlling inter-
action as many systems do—something already widely used. However, it provided
a new highly parameterized abstraction of that concept which made it much easier
for developers to use. Systems also sometimes bring together a disparate set of
capabilities that has not been combined before or combine capabilities in new ways
that make them more useful. As an example, every major operating system today
includes a subsystem specifi cally for handling overlapping windows, which pro-
vides basic input and output capability on a single set of devices that can be shared
by many programs.

 Basic capabilities : Another enabling contribution is an advance on a specifi c and
diffi cult problem that is holding up progress in a problem domain. The advance
made may be very narrow but have value in the breadth of the things it enables. By
creating new or improved algorithms, new circuits, or new sensors, we can enable a
range of new inventions. Examples of HCI-relevant basic capacities that have been
introduced, e.g., to modern operating systems include input device drivers, event
modeling (providing an abstraction that describes user input in a device- independent
fashion), and graphics systems (which provide an abstraction for displaying images
on a screen; typically one that can be transparently translated into a range of fast
graphics hardware). In another example, algorithms for face recognition and track-
ing that were able to operate at frame rate (Viola & Jones, 2001) enabled a range of
new capabilities such as digital cameras that automatically focus on faces, thus
producing better photography by average consumers with no additional effort on
their part.

 Finally, it is important to note that enabling research also often takes the form of
 importing and adapting advances made in other technical areas and putting them to
use for new purposes. In some respects this might not be considered invention per se.
However, it surely must be considered a research advance, as in the modern world
substantial progress is made in exactly this fashion—an idea or a concept originally
created in one research domain is fi rst imported, and then typically adapted, for use
in others. For example, fi nite-state automata are now heavily used in implementing
interaction techniques. This concept was fi rst introduced for HCI use by Newman
(1968). However, Newman clearly did not invent fi nite-state automata (they were
originally devised to model neuronal activity (McCulloch & Pitts, 1943) and subse-
quently used in many other ways). Nonetheless, the idea has been of great benefi t in
user interface implementation and has since been built on and improved upon
numerous times (Wasserman, 1985 ; Jacob, 1986 ; Appert & Beaudouin-Lafon,
 2008 ; Schwarz, Mankoff, & Hudson, 2011). As such this importing and adaptation
of a powerful technique can have great value and so must be considered a contribu-
tion in its own right.

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

76

 Approaches to Concept Creation

 It is extremely diffi cult to put one’s fi nger on the best approach to inventing a new
concept. However, there are some strategies that have been shown to be productive
in our experience. One of the most frequent outcomes of inventive work in HCI is
to devise a new way to bridge between technical capabilities and human needs. This
simple framing points the way to some of the most common strategies for develop-
ing technical contributions. A researcher can start from an observed human need
and seek to fi nd a technical approach that can make a positive impact on the need.
This approach often leads one to specialize in one or more application areas, learn-
ing more and more about the details of human needs in that area. For example,
systems supporting special-needs populations such as elder care (see for example
Mynatt, Essa, & Rogers, 2000 ; Mynatt, Rowan, Craighill, & Jacobs, 2001) have
often taken this approach. A researcher may do discovery-based work to better
understand these needs (and human properties that impact them) and then seek
(mostly existing) technological capabilities that might be used to meet these needs.

 Within this general framework, one can also work from the technology side: a
researcher may specialize in one or more areas of useful or promising technology—
learning a substantial amount about how they work (and/or where their weaknesses
lie), and extending and improving them, and then seeking to fi nd existing human
needs that the technology might have a positive impact on. For example Shwetak
Patel and his colleagues have produced several related types of sensors that work by
observing changes in the noise found on household power lines (see Patel,
Robertson, Kientz, Reynolds, & Abowd, 2007 ; Cohn, Morris, Patel, & Tan, 2011 ;
Gupta, Chen, Reynolds, & Patel, 2011). This work was undertaken not because of
a human need but because of a new technological opportunity that the researchers
have considerable expertise with (the ability to rapidly analyze and classify minute
variations in “noise” as an intentional signal). Initially, the research was used to
sense the location of people within the home, but the researchers also developed the
capability to sense appliance use and then simple gestures. These potentially very
useful sensing capabilities could be installed simply by plugging a device in (as
opposed to hiring an electrician). Thus, as it happened, the resulting product was
able to meet several human needs, once it was packaged in an easily deployable box
and tied to applications of interest.

 This type of technology-fi rst approach has developed a bad reputation within the
HCI research community. Historically, researchers coming from technological dis-
ciplines have not always matched their emphasis on progress in the technology with
careful attention to true human needs. However, if inventions are in the end really
valued in proportion to their positive effect on human needs, then it does not funda-
mentally matter whether a technology-driven or a needs-driven approach was driv-
ing the effort to meet those needs. Not only that, technology is currently changing
very quickly, while human needs are changing relatively slowly. Indeed, technology
is becoming pervasive so rapidly that it is beginning to drive change in human
needs. Also, invention that focuses ahead of the technology curve is more likely to

S.E. Hudson and J. Mankoff

77

be relevant in the 5–10-year horizon that matters in research. These factors combine
to make technology-fi rst invention an effective way to build bridges between tech-
nology and human needs.

 Of course, in practice good researchers often do not limit themselves to either
pure needs-fi rst or technology-fi rst approaches. Instead a common approach is to
study (or simply stay informed about) the properties of people and the progress in
meeting needs within a few application areas and at the same time carefully track
progress in a range of potentially useful technologies, searching for new things that
might meet outstanding needs. This points to another important property of inven-
tive work—that progress is very often made not by conceiving of entirely new
things but instead by recognizing that innovations might be used in additional ways
and adapting or combining them to meet existing needs. While we often think of
invention at its heart as the conception of new things, in fact it much more often
involves recognition of new possibilities within already invented things or enabled
by new combinations of things (followed in many cases by some adaptation). For
example, low-cost MEMS-based accelerometers were originally marketed in large
part to support the deployment of airbags in automobiles. But once these devices
became available, they were adapted for HCI use. First they were used for exploring
the use of tilt as a general form of input (Harrison, Fishkin, Gujar, Mochon, & Want,
 1998). This in turn was adapted in additional research on the use of sensors in
mobile devices to support landscape/portrait display orientation switching (Hinckley,
Pierce, Sinclair, & Horvitz, 2000), which was in turn adopted with small modifi ca-
tions in most current smartphone and tablet interfaces.

 In addition to bridging between technology and needs, another typical strategy
for making progress is to seek out particular roadblocks to advancement and focus
specifi cally on those. This strategy typically involves carefully tracking progress in
some application or technological area, analyzing what the roadblocks to progress
or limitations of current solutions are, and then producing concepts targeted specifi -
cally at these roadblocks. This approach can often be more indirect—it does not
seek to directly impact a human need but instead enables something else that
 (eventually) will. For example, the authors’ joint work on tools and techniques for
dealing with uncertainty (Mankoff, Hudson, & Abowd, 2000a , 2000b ; Schwarz,
Hudson, & Mankoff, 2010b) arose in part from the diffi culty of building a specifi c
recognition- based interface to address the need of people with certain disabilities to
use something other than the keyboard and mouse for computer input. Tools are a
common outcome of this paradigm.

 Validation Through Building of Proof-of-Concept
Implementations

 When we consider validation of an invented concept there are many criteria with
which we might judge it. However, most fundamental is the question of “does it
work?”. A concept can have many good properties, but unless and until it can be

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

78

realized in a form that actually functions, none of those properties matter very
much. Further, experience with invented concepts shows that many ideas that seem
excellent at the early point we might call on paper fail in the details that they must
confront during implementation. That is, there are one or more seemingly small or
hidden details that end up becoming a major obstacle to practical implementation of
the concept. Most small details are relatively unimportant. However, some details
can end up critically important, and experience has clearly shown that it is very dif-
fi cult to segregate the critical from the trivial details in advance. This diffi culty leads
to the most fundamental of validation approaches for inventive work: proof-of-
concept implementation . Because of the diffi culty of uncovering critical details,
experienced inventors do not put much credence in an idea until it has been at least
partly implemented; in short: you do not believe it until it has been built .

 The centrality of proof-of-concept implementations as a validation mechanism is
so strong that the evolved value system gives building a central role. Even a really
strong user study or other empirical evaluation cannot improve a mediocre concept
(or tell us how good an invention it is). In contrast, a proof-of-concept implementa-
tion is a critical form of validation because an invented concept is not normally
trusted to be more than mediocre without an implementation.

 While the creation of concepts is arguably the most important aspect of inven-
tion, proof-of-concept implementations typically consume the most time and effort
in inventive work. Building things is typically hard, so hard that it is often impracti-
cal to build a complete implementation of a candidate concept. This should not be
surprising since it is not uncommon to spend millions of dollars and years of time
on the development of a signifi cant real-world product. However, it makes little
sense to expend the resources necessary to create a complete implementation of a
concept before much is known about how well, or even whether, it might work.
Hence, in research most proof-of-concept implementations are compromises that
implement some of the critical aspects of an idea but do not necessarily consider all
the different factors that must be addressed for a full complete product. Such a com-
promise seeks to maximize the knowledge gained while working within appropriate
constraints on the resources required for building.

 Questions Proof-of-Concept Implementations Answer

 Proof-of-concept implementations normally seek to elicit particular types of knowl-
edge. This knowledge most often starts with some variation on the basic question of
“does it work?”. However, we often end up asking “does it work well enough?”.
How we choose to defi ne “well enough” in turn has a strong impact on the type and
extent of implementation we undertake. Sometimes we are looking for evidence
indicating that the concept offers some advantage over existing solutions to the
same problem. For example there were a number of promising input devices for
pointing at displays devised before the mouse (English, Engelbart, & Berman,
 1967), but the mouse was found to be a particularly good pointing device compared
to its competitors (Card, English, & Burr, 1978). Sometimes, particularly when

S.E. Hudson and J. Mankoff

79

creating a completely new capability or overcoming a critical stumbling block, we
are only looking for evidence that the concept works at a minimal level (but perhaps
shows promise to be improved). An example is our exploration of the value of cords
as an input device (Schwarz, Harrison, Hudson, & Mankoff, 2010a). Sometimes we
require information about accuracy, accessibility, or effectiveness of the technical
concepts with respect to end users of some type, in which case a certain level of
robustness may be required.

 The question of “does it work (well enough)?” is also complicated by the fact
that the inventions most valued are often those that are most robust to the widely
varying conditions of the real world. Similarly, for tools, we ask which ones enable
the widest range of other things to be created, potentially even unanticipated ones.
So the question almost always also starts to shift into one of “in what circumstances
does it work?”. Finally, even when a system does not work well, we may still learn
something useful if there is enough promise that the concept might be made to work
and we uncover information about what problems need to be overcome.

 Overall, the knowledge we seek to elicit through an implementation tends to be
rich and varied. Correspondingly, as described in the next section, the types of
implementation approaches seen in typical practice also tend to take on a wide
variety of forms and approaches (and none really dominates). There are many dif-
ferent implementation platforms that may be used, ranging from scripting or pro-
totyping platforms not normally suitable for production use to “industrial strength”
platforms of the same type that might be used for a fi nal implementation. Similarly,
implementations may consider only a very narrow range of function—only that
which is new or what is strictly necessary to demonstrate the concept alone—or
may include a richer set of functions necessary to make use of it in more realistic
settings. In the end, to be suffi cient, a proof-of-concept implementation needs to
be complete enough to answer both the basic questions of “does it work (well
enough, etc.)?” and any set of additional questions that we might wish to ask in an
extended evaluation.

 Types of Proof-of-Concept Implementations

 Many proof-of-concept implementations take a form that can best be described as a
 demonstration . To succeed, that demonstration must illustrate the worth of the
invention and in many cases motivate why it should be considered a success.
Demonstrations fall along a rough scale of completeness or robustness. As used in
the HCI research community, the presentation form of a demonstration is an indirect
measure of its robustness, ordered below from the least to the most robust:

• Description in prose
• Presentation through photos (or screen dumps) showing the invention working
• Video showing the invention in use
• Live demonstration by the inventors
• Testing of properties with users
• Deployment to others to use independently

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

80

 Presentation type works as a rough surrogate indicator because as we progress
along this scale, more and more robustness or completeness is required to ade-
quately present it (in part because the circumstances become less and less controlled
or more open and arbitrary).

 While higher levels of robustness or completeness clearly provide improved evi-
dence about the quality of the invention, progression along this scale also involves
dramatically increased levels of effort and resources. For example, deployment for
widespread use can require a level of completeness nearly identical to a full product.
(see Chap. Field Deployments: Knowing from Using in Context, this volume.) This
often brings with it a need for development efforts that touch on many things not
particularly relevant to evaluating the invention in question. Yet this extremely high
level of effort may provide only a small increment in additional knowledge. In fact
in the worst case, a high-end demonstration involving something like a deployment
can even introduce enough confounds unrelated to the core invention that it actually
obscures our understanding of it. For example, a deployment may fare very poorly
with end users, but this might be due to factors completely unrelated to the worth of
the core invention.

 For example, suppose we have invented a way to help people who are deaf to fi nd
out about the content of ambient sounds in their environment (e.g., Matthews, Fong,
Ho-Ching, & Mankoff, 2006). This piece of work, originally completed in 2004,
depended on a human to transcribe audio that was shipped to them at the request of
a participant who pressed a “What happened?” button on their mobile phone. At the
time, technologies that would make this easy to implement today were not avail-
able: smartphones were just beginning to be available (but Android and the iPhone
were not), Mechanical Turk was less than a year old, speech recognition could only
function in constrained environments, and non-speech audio was not easily recog-
nized. Our “deployment” lasted only a few weeks and required of users that they
deal with cellular network wait times of up to 9 h and depend on a single human
transcriber who was only available for a limited set of hours each day. From a tech-
nical perspective, all of these barriers were peripheral to the invention itself.

 Our validation consisted of our proof-of-concept implementation and was (in
this case) enhanced by some data on places and ways in which the technology was
used by users who were willing to put up with the other diffi culties. At the time,
nothing similar existed, so the appropriate goal for the work was to answer the
question “can we do this at all?”. Our study also answered some questions about
“what sounds need to be recognized to automate this?” (such as emotion, non-
speech audio) and in the process answered some questions about “where might
people use this?” though the last contribution was not strictly necessary for the
work to make a technical contribution. In the six years since the work was pub-
lished all but one (the recognition of non-speech audio) have been “solved.” Thus,
similar work done more recently has pushed much further on raising the ceiling for
what can be done. An example is VizWiz (Bigham et al., 2010) that introduced a
new way to use crowd workers to increase the speed of real-time image interpreta-
tion for the blind, and Legion Scribe (Lasecki, Miller, Kushalnagar, & Bigham,
 2013), which made further advances to enable real-time captioning of videos.

S.E. Hudson and J. Mankoff

81

However, from a technical HCI perspective, the value of the invention was clear
(and publishable) irrespective of these diffi culties.

 As a result, it is critical to fi nd an appropriate trade-off between robustness and
completeness compared to the cost and effort necessary to create such an implemen-
tation. If we were to insist that each invention has the most robust implementation
before we could trust its worth enough to build on it, progress in the fi eld would be
dramatically reduced—we would spend our time creating many fewer things and so
decrease our ability to learn from, and build on, the previous efforts.

 Alternatives to Proof-of-Concept Implementations

 Although proof-of-concept implementations at some level are considered necessary
as a basic validation, there are times when they are either not appropriate or not pos-
sible. For example, one less common way to make a contribution is to categorize or
organize prior work in an area in a way that places it in a much more understandable
light. This includes for example creating a useful taxonomy for a body of work,
such as the design space of input devices put forth by Card and Mackinlay (1990).
While this does not involve the creation of any new invention per se, it requires the
creation of a conceptual framework of new organizing principles. Such a framework
may highlight properties that have not been combined or identify areas that have not
been explored. For example, our review of approaches to handling uncertainty in
user input (such as touch screen input or gestural input) breaks uncertainty down
into target uncertainty (where did the user click or what did he or she intend to inter-
act with), recognition uncertainty (what interaction type is indicated) and segmenta-
tion uncertainty (where did an input begin and end) (Mankoff, Hudson, & Abowd,
 2000a , 2000b). By viewing related work through the lens of different types of
uncertainty, we can see that very few if any researchers have addressed segmenta-
tion uncertainty in the same depth that other forms of uncertainty have been
addressed. Observations such as these can point to areas that are “ripe” for new
work and thus make it easier to invent new things.

 Another occasion when proof-of-concept implementations are less viable is when
a concept requires something beyond the current state of the art to realize. While we
might consider such concepts impractical and discard them, they can be very valu-
able contributions. For example, imagine an application that requires two problems
to be solved (such as more accurate eye tracking in real-world contexts and more
robust registration of the user’s head position with the world). It may be possible to
make progress in one area (more robust registration, say) while waiting for progress
in the other. Similarly, we may want to demonstrate the high value in terms of unre-
alized applications of a currently unsolved problem as motivation for others to direct
their attention and resources to solving it. Because of the value of being able to
consider concepts seemingly beyond the present capability, the community has
developed several approaches to learning about the properties of these concepts.
These include buying a time machine , Wizard of Oz approaches, and simulation .

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

82

 Buying a Time Machine

 One approach to working beyond the state of the art is what is sometimes called
 buying a time machine . This approach involves spending a comparatively large
sum of money or other resources—a sum too large to be justifi ed for a real prod-
uct of the same type—to get access now to technology that we can expect to be
much more affordable and/or practical in the future. For example, we might be
able to explore the capabilities of a future home vacuum-cleaning robot with very
sophisticated vision processing by implementing the vision processing on a rented
high-end supercomputer that communicates with the robot wirelessly. It is not
currently practical to put a supercomputer in a vacuum cleaner, but the exponen-
tial growth of computing power described by Moore’s law makes it reasonable to
assume that the equivalent computing power will be available in a single-chip
computer in the future.

 Unfortunately, in the area of general-purpose computing, it is harder to buy a
time machine today than it has been in the past. For example, in the middle of 1980s
technical HCI researchers could employ what were then high-end workstations that
performed 10 or even 100 times faster than typical consumer products of the era.
This allowed them to explore the properties of systems that would not be widely
practical for consumers for another 5–10 years. However, because of changes in the
market for personal computers, it is not that easy to leap ahead of the “average”
system today. On the other hand, advanced systems today are incredibly capable
and diverse in comparison to past systems. Additionally, today’s researchers may
exploit graphic processing units (GPUs), create custom electronic circuits, or use
(currently) more expensive fabrication techniques such as 3D printing to explore
concepts. Each of these technologies allows us to make use of technologies that will
likely be more practical and ubiquitous in the future but also currently comes at a
cost in terms of requiring specialized skills or approaches.

 Wizard of Oz Prototyping

 Wizard of Oz prototyping involves simulating advanced capabilities by means of a
hidden human who performs actions that a future system might be able to provide
autonomously. This method was originally developed to explore user interface
aspects of natural language understanding systems that could not yet be built in
order to inform how such a system should be structured (Kelley, 1983 , 1984). The
Wizard of Oz approach clearly has some substantial advantages, both for exploring
currently unattainable capabilities and simply for more rapidly and inexpensively
simulating attainable ones. However, care must be taken to limit the wizard to an
appropriate set of actions and to understand the effects that differences such as
slower response times might have.

S.E. Hudson and J. Mankoff

83

 Simulation

 A fi nal way in which we might explore concepts that are impractical or impossible
to build is to make use of simulation. This can take the form of simulating some or
all of a system or of providing simulated rather than actual input data. A related set
of techniques has recently emerged in the form of crowdsourcing (see Chap.
Crowdsourcing in HCI Research, this volume), wherein large numbers of human
workers recruited by services such as Amazon’s Mechanical Turk can provide
forms of human computation (simulating what otherwise might be computed by a
machine). Interestingly, recent research shows that it may be possible not only to
temporarily substitute human computation for future parts of a system but also to
consider using crowdsourcing techniques as a part of a deployed system (Bernstein
et al., 2010 ; Bernstein, Brandt, Miller, & Karger, 2011).

 Secondary Forms of Validation

 Beyond the central questions surrounding “(In what circumstances) does it work (well
enough)?” there are a wide range of other criteria by which we can validate invention
in HCI. These follow a set of properties that the community often sees as valuable.

 Validations of Inventions Providing Direct Value for Human Needs

 For inventions that are providing a direct contribution, we value creating an artifact
that meets a stated human need. These needs are often met by creating a new capa-
bility or by speeding or otherwise improving a current capability. Perhaps the most
common evaluation methods we see employed to demonstrate this are usability
tests, human and machine performance tests, and what we will call expert judgment
and the prima facie case. Although these are not universally appropriate, they are
the most common in the literature.

 Usability Tests

 Because of the current and historical importance of usability and related properties
as a central factor in the practice of HCI, usability tests of various sorts have been
very widely used in HCI work and are the most recognizable of evaluation methods
across the fi eld. In fact the authors have frequently heard the assertion among stu-
dents and other beginning HCI researchers that “you can’t get a paper into CHI 1
without a user test!”

1 The ACM SIGCHI Conference on Human Factors in Computing Systems , which is the largest HCI
conference and seen by many as the most prestigious publication venue for HCI work.

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

84

 This assertion is demonstrably false. An invention must be validated, but valida-
tion can take many forms. Even if a usability test shows that an invention is easy to
use, it may not be very impactful. Its ability to be modifi ed, extended, or applied to
a different purpose may be much more important than its usability. Additionally,
while user-centered methods may help with iterative design of a product, for the
actual act of inventing—the conception of a new thing—usability tests offer rela-
tively little assistance. However, usability testing (and other user-centered methods)
does represent a bias of the community at large, particularly when results are going
to be presented to, or evaluated by, a wide audience within our diverse fi eld. This is
likely true because they are one of the few evaluation methods with which every
HCI researcher is sure to be familiar with.

 On the other hand, usability tests are clearly appropriate when they match the
properties of a research advance. Any research that puts forward an artifact or a
system intended to provide improvements in usability, user experience, etc. clearly
needs to present evidence that this is the case. There are a range of widely employed
methods for doing this. Not all inventive research seeks to improve on user-centered
properties. Indeed, it is critically important that we do not push for all or even most
inventive research to aim mainly at these goals. If we were to do that, the fi eld would
suffer substantially because in early stages of work on a new type of artifact we
must often fi rst get past the questions such as “can we do this at all?” and “what
capabilities are most important?” before considering whether something is useful/
usable/desirable/etc.

 Photo in the right is copyright © 1997 by Steven Feiner (used with permission). Photos in the left
are (top) “New York Times on iPhone 3GS” by Robert Scoble, http://www.fl ickr.com/photos/sco-
bleizer/4697192856 , and (bottom) “Details of Google Glass” by Antonio Zugaldia, http://www.
fl ickr.com/photos/azugaldia/7457645618/ , both published under a Creative Commons Attribution
2.0 Generic License

S.E. Hudson and J. Mankoff

http://www.flickr.com/photos/scobleizer/4697192856
http://www.flickr.com/photos/scobleizer/4697192856
http://www.flickr.com/photos/azugaldia/7457645618/
http://www.flickr.com/photos/azugaldia/7457645618/

85

 In short, as illustrated in the fi gure above, it is often necessary to pass through
decidedly non-usable stages to create the technology necessary to make something
that in the end delivers a great user experience.

 Human Performance Tests

 Another very widely used class of evaluation methods involves measuring the per-
formance of typical users on some set of tasks. These tests are most applicable when
goals for results revolve around a small set of well-defi ned tasks. Work in interac-
tion techniques is one of the few areas where this type of validation is consistently
appropriate. Because some interactive tasks recur frequently, this is also one of the
few areas where at least some consistent and reusable measures have emerged. In
particular, measurement of pointing performance within a Fitts’ law framework
(e.g., determining Fitts’ law coeffi cients for devices and interaction techniques) is
common because pointing and selection tasks are fundamental to many interactive
systems (MacKenzie, 1992 ; Wobbrock, Cutrell, Harada, & MacKenzie, 2008).
Similarly measures of effi ciency in text entry such as keystrokes per character
(Mackenzie, 2002) have become well developed because text entry is a common
task that has received considerable inventive attention.

 One danger in using this kind of evaluation is that human performance tests are
easiest to apply to narrow and well-defi ned tasks and generally seen as most valid
when they are carefully controlled. Unfortunately, this leads away from the values
of wide applicability of results (e.g., an invention useful for a wide range of tasks)
and so can be in confl ict with other properties of interest for inventive HCI research.
Instead of looking for statistically signifi cant improvements, it is important to focus
on practical signifi cance (effect size), and unfortunately there are no simple or
widely accepted criteria for that. So while human performance tests are widely
accepted and understood by the community, without care they can be much less
useful than their popularity might indicate. (See Chapter on Experimental Research
in HCI, this volume.)

 Machine Performance Tests

 Tests can also be done to measure the performance of an artifact or an algorithm
rather than the person who uses it. These can be very practical in providing informa-
tion about the technical performance of a result such as expected speed, storage
usage, and power consumption. These measures resemble the validation measures
commonly used in other domains such as systems research in computer science. It
is often considered valid to simulate use across a range of conditions to generate
such measures. Although this may be indirect and lack real-world validity, such
tests of technical performance can in turn point to likely effects on end users such
as expected response times or battery life of a device. Similarly, tests could indicate

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

86

properties such as “ runs at frame rate 2 ” that may indicate that the part of the system
being tested is unlikely to be a bottleneck in overall performance, thus telling the
researcher that it may be appropriate to turn to improving other parts of the system
in the future.

 Expert Judgment and the Prima Facie Case

 Properties such as innovation and inspiration are of substantial value for many
research results. Opening new areas others had not considered before and providing
a motivated basis for others to build within them are central to progress within the
community. However, these factors are extremely hard if not impossible to measure
in any standardized way. For these important but more nebulous properties we most
typically must rely on what amounts to expert opinion—whether the result impresses
other researchers experienced in the area. This is often done with demonstrations
and/or scenarios that are intended to present a prima facie case for innovation and/
or inspiration. In essence these are intended to elicit a reaction of “Wow, that’s
cool!” from experts who know the area well and can informally compare it to the
state of the art. Such a reaction is a rapid and informal but an experienced-based
assessment that the work has important properties such as advancing the state of the
art, opening up new possibilities, or taking a fresh approach to an established prob-
lem. For example, inventions may open a new area that had not been conceived of
before (such as inspiring large numbers of people to do small bits of useful work by
playing a game, see von Ahn & Dabbish, 2008) or take a substantially different
approach to a problem that many others have worked on (such as recognizing activi-
ties in a home by listening to water pipes and electrical noise in the basement
(Fogarty, Au, & Hudson, 2006 ; Patel et al., 2007) or identifying people based on
recognizing their shoes, see Augsten et al., 2010).

 Clearly this type of validation has problems. It is very dependent on the subjec-
tive opinion of experts (most notably reviewers of papers seeking to publish the
results) and as such is not very reliable or repeatable. Applying validations of this
form to activities of discovery would normally be unacceptable. But in activities of
invention where we usually must deal with the uncontrolled complexity of the
world, and often seek the widest circumstances for applicability, we are almost
never able to know everything we need to know with certainty. As a result follow-on
work tends not to make strong assumptions about the applicability of past validation
to current circumstances. This means that the uncertainty associated with this type
of validation can be more acceptable and less damaging if it turns out to be wrong.

 Validation of this form is seen fairly widely in practice—things are valued based
on informal assessment of their level of innovation and inspiration by experts, in
colloquial terms things treated as having value in part because “they seem cool” to

2 This is the rate of display refresh (which is typically 50 or 60 times per second in order to avoid
perceived fl icker). This rate is of particular interest because even if internal updates to visual mate-
rial occur faster than this, they will still never be presented to the user any faster than this.

S.E. Hudson and J. Mankoff

87

those with experience in similar work. However, the uncertain properties of this
approach make reliance on this type of validation alone a rather risky and unpredict-
able approach, both for the inventor seeking acceptance of a single invention and the
fi eld in making progress overall. To overcome this, most inventions that are vali-
dated in this way often seek to provide additional forms of validation (starting with
proof-of-concept implementations).

 Validations of Tools That Have Indirect Impact on Human Needs

 We now consider validation methods for our second set of contributions: those that
provide indirect value—that contribute to something that enables or promotes an
eventual practical impact rather than providing it directly. For these properties, a
rather different set of approaches to validation are appropriate.

 One of the most important forms of validation for enabling tools is the use of
examples of things that can be built with the tool that demonstrate certain desirable
properties of the tool. These can include demonstrations of lower threshold, higher
ceiling, breadth of coverage of a desirable design space, increased automation, and
good abstractions or extensibility, discussed in more detail below. For inventions
involving base capabilities (which are often aimed at overcoming specifi c road-
blocks or limitations of prior work) machine performance tests and in some cases
illustration of a prima facie case may be useful.

 Threshold, Ceiling, and Breadth of Coverage

 A primary example of how inventions help researchers make useful things is
 improvements in threshold or ceiling effects (Myers, Hudson, & Pausch, 2000).
(Threshold effects relate to the ease with which simple things can be accomplished
and/or novice users can get started, whereas ceiling effects are related to the limita-
tions of a tool or a system for creation of complex or unexpected things.) Validating
a low threshold for a tool is often done with a demonstration where the inventor
illustrates that something, which in other tools requires considerable work, can be
created in their tool easily. For example, the inventor may demonstrate how some-
thing can be built in a small number of steps or using a small amount of specifi ca-
tion code. Validating a high ceiling is most typically done via a demonstration
wherein the inventor shows that one or more sophisticated or complex things—
often things that are out of the practical reach of other tools—can be created with
their tool. Unfortunately, low threshold tools often tend to impose a low ceiling, and
high ceiling tools often come with a high threshold. Consequently, fi nding ways to
ensure both low threshold and high ceiling in one tool is highly valued. Illustration
of breadth of coverage is often provided by demonstrating a spread of examples —
that is, a set of examples that are very different and that span a large(r) space within
the set of possible results.

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

88

 These types of validation all involve creating examples with the tool. Note that
the validation is about creation of the examples, but the full properties of the result-
ing examples are usually not the central issue. So validations that address the prop-
erties of the examples themselves are generally not appropriate. For example,
performing a usability test on an example built with a tool would likely tell us
almost nothing about the tool—many different things might be built with any good
tool, and the usability of those things is at least as much a refl ection of the designer
using tool as it is a property of the tool. Instead the simplicity of creation (for thresh-
old), the power or complexity (for ceiling), or the variety (for breadth of coverage)
of the examples is what is critical.

 As with other sorts of inventions, machine performance tests may be valuable
for enabling technologies. For example, in the case of increased automation it can
be appropriate to use performance tests to show that the results are comparable to
what is created by previous non-automated methods. Similarly, it may be valuable
to demonstrate that the abstractions employed work as the use of the tool scales up.
This can be proven in part using simulation, but description and logic may also
play a role.

 Presentation of Good Abstractions

 Like the other validations appropriate for tools and systems, a typical validation for
good abstractions is through a set of illustrative examples. To illustrate extensibility,
these examples are often similar to breadth of coverage examples, in that illustrating
a spread of applicability is useful. For illustrating improved understanding, or ease
of application, sets of examples are often similar to those used to illustrate improve-
ment in fl oor or ceiling effects. While at times this is validated by having developers
actually use a toolkit and exploring the details of what they built (see below) this is
in many cases a prohibitively expensive way to validate, and it is often considered
suffi cient to describe abstractions and clearly contrast them with prior alternatives.

 Usability for Developers

 In some cases, usability tests may be carried out with enabling tools. However these
tests need to focus on the developers who may be using the tool to create applica-
tions, not on the end users of the applications created. The number of confounds
affecting our ability to evaluate whether a tool engenders usable applications from
an end-user perspective is enormous, and the usability of applications is often not
the primary value of the tool and should not be the central focus of validation efforts.

 Some evaluation of developers working with tools has focused on what abstrac-
tions they make use of. When a tool is suffi ciently far along to have a large devel-
oper community, it can also be interesting to look at metrics such as what types of
applications were built with the tool and how the tool was extended. This begins to

S.E. Hudson and J. Mankoff

89

resemble studies of programmers, programming, and open-source communities.
However the cost of bringing a tool this far along may be prohibitive especially
when compared to the benefi ts for invention. Further, because of the high number of
confounding factors that may be outside the scope of the tool advance being pre-
sented, this type of validation can actually be quite “noisy.” In particular, it is very
diffi cult to separate the effects arising from extraneous usability issues in tool inter-
faces being compared from those related to the core concepts of the tools.

 Summary

 At this point we must step back and note that the primary form of evaluation for
enabling technologies is to build key parts of the technology (proof-of-concept cre-
ation). As outlined above, after this primary step it is typical to consider additional
validation that highlights the specifi c goals of the work, that is, to describe the
abstractions it employs clearly or to build examples that demonstrate the capabili-
ties of the technology. While there are some secondary evaluations that involve
(end) user studies, these are rarely employed.

 Summary and Conclusion

 In this chapter we have considered the nature of technical work in HCI. To do this
we have fi rst situated the work in a broad framework that contrasts its inventive
character with one of the other dominant bodies of activities within HCI: those of
discovery. This high-level characterization of the work is useful because it allows us
to see fundamental differences in the nature of the two kinds of work. These in turn
lead to very different values and methods that have evolved to suit each type of
work. For example, we conclude that the specifi cs of methods used in activities of
discovery are extremely important—so much so that results are not really under-
standable in isolation from the methods used to reach them, and so they really
become part of the results themselves. In contrast, for activities of invention, the use
of one method versus another is much more fl uid and less fundamental. Instead, the
application of the invention, as demonstrated through a proof-of-concept implemen-
tation of the thing invented, is a crucial component of the result.

 Using this overall conceptual framework we then consider inventive HCI work
itself. We characterize two broad categories of contributions: direct and indirect—
where direct contributions directly contribute to meeting some human need, while
indirect contributions serve as enablers for later work that meets some human need.

 We then go on to characterize the tasks of inventive work in HCI. These tasks
include concept creation and validation of concepts. However, we note that one form
of validation—the building of proof-of-concept implementations—is more funda-
mental than other forms. Because it addresses the basic issue of “does it work?”

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

90

a proof-of-concept implementation represents a prerequisite for other validation of
the work. Because of its special nature it is the normal practice in technical HCI to
give proof-of-concept implementations separate and stronger consideration than
other forms of validation. As a result, we conclude that technical HCI work should
be considered in three parts: concept creation, validation through proof-of- concept
implementation, and other validation. The creation of a proof-of-concept implemen-
tation (which may need to be quite complex in some cases, as with a toolkit) is a key
point of difference with other forms of HCI: Technical HCI is about making things
that work, and the work of technical HCI is not done until the validation inherent in
an implementation (at a minimum) is complete.

 We explore each of these three parts separately. There are few specifi c methods
that one can expect to provide consistently positive outcomes for concept genera-
tion. However, we do consider several general strategies for going about the work.
These include needs-fi rst and technology-fi rst approaches. We also point to some
advantages for technology-fi rst approaches, even though they have developed a
somewhat tarnished reputation within the HCI research community. We then con-
sider validation through proof-of-concept implementations by looking at why
they are so critical and central. We elucidate the questions that they can address
and highlight the diminishing returns inherent in making a prototype complete
and robust.

 Finally, we consider a range of different forms of secondary validation that can
be useful. We characterize a range of different measures we might be interested in
and then consider an equally wide range of techniques that can be applied to provide
information in those areas. We emphasize again that we must consider a trade-off
between the level of knowledge to be gained and the costs of these evaluations and
point to places where our community has not always succeeded in choosing the best
evaluation methods.

 It is typical that technical researchers learn these methods and ideas through
osmosis—few courses teach approaches to validating technical work or concept
creation in the way that study design and analysis are taught, for example. Instead,
technical education programs tend to give researchers the necessary knowledge
base from which to invent (how to program, how to use machine learning, how to
build circuits, and so on) and hope that with that knowledge, the examples of those
who came before (and the guidance of mentors), and a good dose of creativity the
novice research will create good results. This chapter has set out to rectify some of
those gaps by putting common practice, and the rationale behind it, into words.

 Exercises

 1. Compare and contrasts technical HCI research with research through design.
 2. Where do the ideas come from for technical HCI research? What is the problem

that researchers are solving?

S.E. Hudson and J. Mankoff

91

 References

 Appert, C., & Beaudouin-Lafon, M. (2008). SwingStates: adding state machines to Java and the
Swing toolkit. Software: Practice and Experience, 38 (11), 1149–1182.

 Augsten, T., Kaefer, K., Meusel, R., Fetzer, C., Kanitz, D., Stoff, T., et al. (2010). Multitoe: high-
precision interaction with back-projected fl oors based on high-resolution multi-touch input.
 Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology
(UIST’ 10) , (pp. 209–218).

 Bernstein, M. S., Little, G., Miller, R. C., Hartmann, B., Ackerman, M. S., Karger, D. R., et al.
(2010). Soylent: a word processor with a crowd inside. Proceedings of the 23nd Annual ACM
Symposium on User Interface Software and Technology (UIST’ 10) , (pp. 313–322).

 Bernstein, M. S., Brandt, J., Miller, R. C., & Karger, D. R. (2011). Crowds in two seconds: enabling
real-time crowd-powered interfaces. Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology (UIST’ 11) , (pp. 33–42).

 Bigham, J. P., Jayant, C., Ji, H., Little, G., Miller, A., Miller, R. C., et al. (2010) VizWiz: nearly
real-time answers to visual questions. UIST 2010 (pp. 333–342).

 Buxton, W., Lamb, M. R., Sherman, D., & Smith, K. C. (1983). Towards a comprehensive user
interface management system. SIGGRAPH Computer Graphics, 17 (3), 35–42.

 Card, S. K., English, W. K., & Burr, B. J. (1978). Evaluation of mouse, rate-controlled isometric
joystick, step keys, and text keys for text selection on a CRT. Ergonomics, 21 , 601–613.

 Card, S. K., Mackinlay, J. D., & Robertson, G. G. (1990). The design space of input devices .
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’ 90) ,
(pp.117–124).

 Cardelli, L. (1988). Building user interfaces by direct manipulation. Proceedings of the 1st Annual
ACM SIGGRAPH Symposium on User Interface Software (UIST’ 88) , (pp. 152–166).

 Jayant, C., Ji, H., White, S., & Bigham, J. P. (2011). Supporting blind photography. In The pro-
ceedings of the 13th international ACM SIGACCESS conference on computers and accessibil-
ity (pp. 203–210). New York, NY: ACM.

 Cohn, G., Morris, D., Patel, S. N., & Tan, D. S. (2011). Your noise is my command: sensing ges-
tures using the body as an antenna. Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI '11) , (pp. 791–800).

 Engelbart, C., & English, W. K. (1968). AFIPS Conference Proceedings of the 1968 Fall Joint
Computer Conference, San Francisco, CA, December 1968, (Vol. 33, pp. 395–410)

 English, W. K., Engelbart, D. C., & Berman, M. L. (1967). Display-Selection Techniques for Text
Manipulation. IEEE Transactions on Human Factors in Electronics, HFE-8 (1), 5–15.

 Feiner, S., MacIntyre, B., Hollerer, T., & Webster, A. (1997). A touring machine: Prototyping 3D
mobile augmented reality systems for exploring the urban environment. Proceedings of the 1st
IEEE International Symposium on Wearable Computers (ISWC’ 97) , (pp. 74–81).

 Fogarty, J., Au, C., & Hudson, S.E. (2006). Sensing from the basement: A feasibility study of
unobtrusive and low-cost home activity recognition. Proceedings of the 19th Annual ACM
Symposium on User Interface Software and Technology (UIST’ 06) , (pp. 91–100).

 Fitts, P. M. (1954). The information capacity of the human motor system in controlling the ampli-
tude of movement. Journal of Experimental Psychology, 47 , 381–391. Reprinted in Journal of
Experimental Psychology: General, 1992, 121(3), 262–269.

 Grossman, T., & Balakrishnan, R. (2005a). The bubble cursor: enhancing target acquisition by
dynamic resizing of the cursor’s activation area. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI’ 05) , (pp. 281–290).

 Grossman, T., & Balakrishnan, R. (2005b). A probabilistic approach to modeling two-dimensional
pointing. ACM Transactions on Computer–Human Interaction, 12 (3), 435–459.

 Grossman, T., Kong, T., & Balakrishnan, R. (2007). Modeling pointing at targets of arbitrary
shapes. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI’ 07) , (pp.463–472).

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

92

 Gupta, S., Chen, K. Y., Reynolds, M. S., & Patel, S. N. (2011). LightWave: Using compact fl uores-
cent lights as sensors. Proceedings of the 13th International Conference on Ubiquitous
Computing (UbiComp’ 11) , (pp. 65–74).

 Harrison, B. L., Fishkin, K. P., Gujar, A., Mochon, C., & Want, R. (1998). Squeeze me, hold me,
tilt me! An exploration of manipulative user interfaces. Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI’ 98) , (pp. 17–24).

 Hinckley, K., Pierce, J., Sinclair, M., & Horvitz, E. (2000). Sensing techniques for mobile interac-
tion. Proceedings of the 13th Annual ACM Symposium on User Interface Software and
Technology (UIST’ 00) , (pp. 91–100).

 Hudson, S. E., Mankoff, J., & Smith, I. (2005). Extensible input handling in the subArctic toolkit.
 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’ 05) ,
(pp. 381–390).

 Hullot, J. M. (1986). SOS Interface. Proceedings of the 3rd Workshop on Object Oriented
Programming, Paris, France , Jan. 1986.

 Ishii, H., Kobayashi, M., & Arita, K. (1994). Iterative design of seamless collaboration media.
 Communications of the ACM, 37 (8), 83–97.

 Jacob, R. J. K. (1986). A specifi cation language for direct-manipulation user interfaces. ACM
Transactions on Graphics, 5 (4), 283–317.

 Kelley, J. F. (1983). Natural language and computers: Six empirical steps for writing an easy-to-
use computer application . Doctoral dissertation, The Johns Hopkins University, Maryland.

 Kelley, J. F. (1984). An iterative design methodology for user-friendly natural language offi ce
information applications. ACM Transactions on Information Systems, 2 (1), 26–41.

 Khan, A., Fitzmaurice, G., Almeida, D., Burtnyk, N., & Kurtenbach, G. (2004). A remote control
interface for large displays. Proceedings of the 17th Annual ACM Symposium on User Interface
Software and Technology (UIST’ 04) , (pp. 127–136).

 Lasecki, W. S., Miller, C. D., Kushalnagar, R. S., Bigham, J. P. (2013). Legion scribe: real-time
captioning by the non-experts. W4A 2013 (pp. 22).

 MacKenzie, I. S. (1992). Fitts’ law as a research and design tool in human-computer interaction.
 Human–Computer Interaction, 7 , 91–139.

 MacKenzie, I. S. (2002). KSPC (keystrokes per character) as a characteristic of text entry tech-
niques. In Fabio Paternò (Ed.), Proceedings of the 4th international symposium on mobile
human–computer interaction (Mobile HCI’ 02), (pp. 195–210).

 Mankoff, J., Hudson, S. E., Abowd, G. D. (2000a). Providing integrated toolkit-level support for
ambiguity in recognition-based interfaces. Proceedings of CHI 2000 , (pp. 368–375).

 Mankoff, J., Hudson, S. E., & Abowd, G. D. (2000b). Interaction techniques for ambiguity resolu-
tion in recognition-based interfaces. Proceedings of UIST 2000 , (pp. 11–20).

 Matthews, T., Fong, J., Ho-Ching, F. W.-L., & Mankoff, J. (2006). Evaluating visualizations of
non-speech sounds for the deaf. Behavior and Information Technology, 25 (4), 333–351.

 McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.
 Bulletin of Mathematical Biophysics, 5 (4), 115–133.

 Meyer, D. E., Smith, K. J. E., Kornblum, S., Abrams, R. A., & Wright, C. E. (1990). Speed-
accuracy tradeoffs in aimed movements: Toward a theory of rapid voluntary action. In
M. Jeanerod (Ed.), Attention and performance XIII (pp. 173–226). Erlbaum: Hillsdale, NJ.

 Myer, B. A. (1990). A new model for handling input. ACM Transactions on Information Systems,
8 (3), 289–320.

 Myers, B. A., McDaniel, R. G., Miller, R. C., Ferrency, A. S., Faulring, A., Kyle, B. D., et al.
(1997). The Amulet environment: New models for effective user interface software develop-
ment. IEEE Transactions on Software Engineering, 23 (6), 347–365.

 Myers, B., Hudson, S. E., & Pausch, R. (2000). Past, present, and future of user interface software
tools. ACM Transactions on Computer-Human Interaction, 7 (1), 3–28.

 Mynatt, E.D., Essa, I., & Rogers, W. (2000). Increasing the opportunities for aging in place.
 Proceedings on the 2000 Conference on Universal Usability (CUU’ 00) (pp. 65–71).

 Mynatt, E. D., Rowan, J., Craighill, S., & Jacobs, A. (2001). Digital family portraits: supporting
peace of mind for extended family members. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI’ 01) , (pp. 333–340).

S.E. Hudson and J. Mankoff

93

 Newman, W.M. (1968). A system for interactive graphical programming. Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference (AFIPS’ 68 (Spring)) (pp. 47–54).

 Patel, S. N., Robertson, T., Kientz, J. A., Reynolds, M. S., & Abowd, G. D. (2007). At the fl ick of
a switch: Detecting and classifying unique electrical events on the residential power line.
 Proceedings of the 9th International Conference on Ubiquitous Computing (Ubicomp’ 07),
(pp. 271–288).

 Schwarz, J., Harrison, C., Hudson, S., & Mankoff, J. (2010a). Cord input: An intuitive, high-
accuracy, multi-degree-of-freedom input method for mobile devices. Proceedings of CHI’ 10 ,
(pp. 1657–1660).

 Schwarz, J., Hudson, S., & Mankoff, J. (2010b) A robust and fl exible framework for handling
inputs with uncertainty. Proceedings of UIST’ 10 , (pp. 47–56).

 Schwarz, J., Mankoff, J., & Hudson, S. (2011). Monte Carlo methods for managing interactive
state, action and feedback under uncertainty. Proceedings of the 24th annual ACM symposium
on user interface software and technology (UIST’ 11) , (pp. 235–244). New York, NY: ACM.

 Shoemaker, G., Tang, A., & Booth, K. S. (2007). Shadow reaching: a new perspective on interac-
tion for large displays. Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology (UIST’ 07), (pp. 53–56).

 Sutherland, I. E. (1963). SketchPad: A man–machine graphical communication system. AFIPS
Conference Proceedings, 23 , 323–328.

 Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features.
 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1 , 511–518.

 von Ahn, L., & Dabbish, L. (2008). Designing games with a purpose. Communications of the
ACM, 51 (8), 58–67.

 Wasserman, A. I. (1985). Extending state transition diagrams for the specifi cation of human-
computer interaction. IEEE Transactions on Software Engineering, 11 (8), 699–713.

 Wobbrock, J. O, Cutrell, E., Harada, S., & MacKenzie, I. S. (2008). An error model for pointing
based on Fitts’ law. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI’ 08), (pp. 1613–1622).

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

	Concepts, Values, and Methods for Technical Human–Computer Interaction Research
	Einstein Versus Edison: Invention as the Basis of Technical HCI Work
	Differences in How Fields Move Forward
	 Differences in What Makes a Result Valuable and Trustworthy

	 The Work of Invention in Technical HCI
	 Types of Contributions
	Approaches to Concept Creation
	 Validation Through Building of Proof-of-Concept Implementations
	Questions Proof-of-Concept Implementations Answer
	 Types of Proof-of-Concept Implementations
	 Alternatives to Proof-of-Concept Implementations
	Buying a Time Machine
	Wizard of Oz Prototyping
	Simulation

	 Secondary Forms of Validation
	Validations of Inventions Providing Direct Value for Human Needs
	Usability Tests
	Human Performance Tests
	Machine Performance Tests
	Expert Judgment and the Prima Facie Case

	 Validations of Tools That Have Indirect Impact on Human Needs
	Threshold, Ceiling, and Breadth of Coverage
	Presentation of Good Abstractions
	Usability for Developers

	Summary

	 Summary and Conclusion
	 Exercises
	References

